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A B S T R A C T

Rotor-Active Magnetic Bearings (rotor-AMBs) systems nowadays have been widely used in
turbomachinery where different methods for assembly were used such as impeller mounted using
shrink-fit. In our experiments we noticed that the conditions of shrink-ft assembly can introduce
instabilities on the levitated rotor at rest. To understand and give recommendations (on the as-
sembly conditions), a numerical model was developed and then was validated experimentally.
The effect of the shrink-fit interface contact was modelled as a contact force acting on the rotor-
AMBs system introduced by distributed spring units with a given contact stiffness. Considering
that there was partial separation in the contact interface due to the AMBs levitating forces, a
novel contact force model related to contact status was established by calculating the real-time
contact area. A microscopic contact model based on fractal theory was developed to calculate
the contact stiffness. The model developed was then validated experimentally simulating the
levitating rotor at rest. The rotor response was analyzed in frequency domains by applying the
different conditions of shrink-fit interference and contact length. The shrink-fit contact conditions
influenced the system stability and made the fourth bending mode unstable. The increase of
shrink-fit interference and contact length decreased closed-loop system stability and increased the
amplitude of the rotor vibration response. The model reliability was assessed and a stable region
using combinations of shrink-fit parameters on the assembly conditions based on the results of
stability analysis was established.

Nomenclature

arc, arl critical real contact area, the maximum real contact area of the contact surface/m2

au, auc, aul truncated area, the critical truncated contact area, the maximum truncated area of the microcontact/m2

A33, B33, C33 unknown coefficients of the equation describing plane PA
A44, B44, C44 unknown coefficients of the equation describing plane PB
Aa nominal area of the contact surface/m2

Am area of one pole of the radial active magnetic bearing/m2

Arc real contact area of the contact surface/m2

Asr state matrix of the state space model of the rotor-AMBs system considering interface contact and control
C0 radial air gap between the rotor and the AMB/m
D fractal dimension
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Nomenclature (continued )

Ddi, Ddo inner diameter and outer diameter of the disk/mm
Dri, Dro inner diameter and outer diameter of the rotor/mm
E equivalent elastic modulus of the contact surface/Pa
Ed, Er elastic modulus of the disk and the rotor/Pa
famb attractive magnetic force along the action line/N
fn, ft normal and tangential contact loads acting on a single microcontact/N
fz cut-off frequency of the power amplifier/Hz
Fn normal load applied on the contact surface/Pa
Fsc vector of the forces generated by the interface contact
FAMB vector of the forces generated by AMBs
G fractal roughness/m
G equivalent shear modulus of the contact surface/Pa
Gd, Gr shear modulus of the disk and the rotor/Pa
Hs transfer function of the feedback control
i frequency index of the surface profile function
ia control current of AMB/A
ka gain of the power amplifier/A•V− 1

kh displacement stiffness of AMB/N•m− 1

ki current stiffness of AMB/N•A− 1

kn, kt normal and the tangential contact stiffness of a single micro-contact interacting with a rigid plane/N•m− 3

ks gain of the displacement sensor/V•m− 1

ksf, ksq normal and the tangential contact stiffness of the massless spring unit/N•m− 3

Ks gain matrix of the forces generated by the interface contact
Kn, Kt total normal and tangential contact stiffness/N•m− 1

KP, KI, KD proportional, the integral and the derivative gains of the PID controller
KEs equivalent contact stiffness matrix
Ksx, Ksy, Ksα, Ksβ gains of the forces generated by the interface contact in x ,y, α, β directions
ls1, ls2 lines formed by the intersection between outer surface, end faces of rotor, and inner surface of disk
L sample length of the surface profile
Ld thickness of the disk/mm
Ls, Lsr contact length of shrink-fit assembly and its half/m
MR, KR, CR mass, stiffness and damping matrices of the rotor
n size distribution function of microcontacts
Nc turns per coil of a pair of poles in AMB
pe, pp normal contact load of a single microcontact with elastic and plastic deformation/Pa
P Power Spectral Density of the surface profile/μm3

Pc pressure of the shrink-fit assembly/Pa
qr, qp, qq, qs displacement vectors of rotor, node p, node q and sensor nodes
ru truncated radius of the undeformed asperity/m
Rc radius of the curvature of the microcontact/m
Rs nominal radius of the shrink-fit contact/m
Rdo, Rri outer diameter of the disk, inner diameter of the rotor/mm
Ts, Ta, Te, Tsc transfer matrixes of the sensor nodes, AMB nodes, interface contact nodes, node p
TD derivative time constant of the PID controller
Us, Δu energy generated by the deformation of all spring units and single spring unit/J
W1(θ3), W2(θ3) function of line ls2
xC, yC, zC coordinates of Node C in x ,y, z directions in the absolute coordinate system
xD, yD, zD coordinates of Node D in x ,y, z directions in the absolute coordinate system
x’ coordinate along the surface
z1 height of the rough surface/m
z3(θ3) function of line ls1
λ closed-loop system eigenvalues
μ friction coefficient of the contact surface
μ0 permeability of vacuum/H•m− 1

ψ domain extension factor
ωp wavevector of surface profile/μm− 1

υd, υr Poisson ratios of the disk and the rotor
τ elastic deformation in the tangential direction for a single micro-contact interacting with a rigid plane/m
δ, δuc deformation of an individual asperity, critical deformation of an individual asperity/m
δc shrink-fit interference/m
ϕ1,i randomly phase corresponds to the different cutoff frequency of the profile/rad•s− 1

σs yield strength of the disk material/Pa
Δx, Δy, Δz deformation of the spring unit in x ,y, z directions in the absolute coordinate system/m
Δxqp, Δyqp, Δαqp, Δβqp relative displacement between Node p and Node q in x ,y, α, β directions/m
θ3, θ31, θ32 coordinate along the circumferential direction, critical degree of the real contact region/◦

1. Introduction

Active magnetic bearings (AMBs) have been widely used in centrifugal gas compressors and other turbomachinery applications [1].
In these rotating machineries, several methods could be used to assemble the different components and particularly shrink-fit
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assembly. The shrink-fit could generally be characterized by its interference and contact length as shown in Fig. 1 [2]. We noticed that,
when the shrink-fit interference is relatively small (there is contact pressure), a possible relative displacement is induced by the AMB
levitating forces, that could lead to the excitation of the structure and could introduce instability for modes that are on the limit of
stability. Usually, when the shrink-fit is tight enough, there is contact pressure but no relative displacement. On the other hand, when
the shrink fit was changed to clearance fit, there is relative displacement but no contact pressure. But in these two cases, the rotor
remains stable when levitated. Yannick Paul et al. mentioned that the poor connection between rotor and the impeller may cause high-
frequency vibration during levitation in the expander-compressors with AMBs[3]. Therefore, the cause of this vibration is the coupling
between the shrink-fit interface contact and the AMB levitating forces [34]. The motivation of this paper is to investigate the influences
of shrink-fit parameters on the stability of the rotor-AMBs system and to determine the suitable shrink-fit parameters to keep the
system stable.

In shrink-fit modelling, there are three main approaches:

(1) The first introduced an equivalent material layer as an intermediate medium to reflect the contact effect [5]. The mechanical
property of the contact interface of shrink-fit assembly was characterized by adjusting the parameters (elastic modulus, Pois-
son’s ratio, density) of the equivalent material layer;

(2) Model updating method, where the shaft with shrink-fit lamination was modelled with an equivalent material, the Young’s
modulus and density of the new material were updated based on modal testing results [6] and equations [7], respectively. This
method ensured the accuracy of rotor’s frequency response but ignored the contact effect;

(3) Spring element method, where the stiffness coefficient of the spring (called contact stiffness) had to be adjusted experimentally.
This is the approach we used in this study.

The spring element method can be divided into two approaches: a concentrated spring element and a distrusted spring element [8].

(a) In the concentrated model, all nodes of the surface are in contact and the contact pressure and deformation are uniformly
distributed. Jafri [9] and Francesco Sorge [1011] studied the sub-synchronous rotor dynamic instability caused by the shrink-fit
interface. The effect of shrink-fit contact was modelled as an angular spring and angular damper that induced slippage friction
forces act as destabilizing cross-coupled moments. Reception Coupling Substructure Analysis (RCSA) method is widely applied
in tool-holder structure modelling. In this method, the shrink-fit contact was modelled as a spring element to connect the tool
substructure and holder substructure [1213]. The contact stiffness heavily relied on the experimental identification of the
parameters. Wei [4] considered the influence of shrinkage fit between shaft and rigid disk as angular spring and angular
damper, which generate rotational disturbance on the shaft.

(b) In the distributed spring model, the contact state of all nodes in the contact surface are anisotropic (some nodes are in contact
and others non). For higher accuracy, Sikanen [1415] built a model by applying three-dimensional element, which can better
simulate the contact property of shrink-fit rotor. The microslip model is widely applied in spigot structure. In the study [1617],
the model considered the stick–slip statuses of spigot by introducing a Jenkins element, therefore was able to describe the spigot
joint’s damping nonlinearity. Thereby, spring element methods are found to be more adapted since the spring element can
describe the relative displacement and the contact pressure efficiently.

Two approaches are usually used to determine the contact stiffness, either updating the contact stiffness based on modal testing
results [1819] where the identification of the contact stiffness based onmodal properties is accurate, but it is not convenient to identify
the contact stiffness under different shrink-fit interferences; or establishing a microscopic contact model, where the relationship be-
tween the contact stiffness and shrink-fit interference is obtained based on fractal theory and hertz contact model. The fractal theory
[20] was used to describe the contact surface profile. The stiffness of the spring in RCSA model [21] and finite element model [2223]

Fig. 1. Rotor-AMBs test rig.
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were calculated based on fractal contact theory that will be presented later. In these studies, the influence of shrink-fit interference,
rotational speed, material properties and contact length on contact stiffness were investigated. The contact stiffness can be calculated
under different contact pressure, but an accurate description of surface profile is necessary.

AMB system was not considered in the researches mentioned previously. Therefore, a modelling of the rotor-AMBs system
(mechatronic model) with shrink fit assembly is proposed in this study. The effect of the shrink-fit interface contact is modelled as a
contact force acted on rotor-AMBs system by applying distributed spring elements. We consider that there is partial separation in the
contact interface due to the AMB levitating forces and a novel contact force model related to the contact status is developed by
calculating the real-time contact area. The contact stiffness is determined based on the fractal model and fractal parameters are
identified by experimental measured microscopic topography. The influences of the shrink-fit interference and the contact length on
system response and stability is studied quantitatively through numerical simulation and experiment validation.

The main contributions of this work are:

(1) The combination of mechatronic model and the microscopic contact model. Based on the finite element-microscopic contact
model, contact effect of shrink fit is considered as disturbance caused by the levitating forces and shrink-fit contact stiffness;

(2) Proposing a new contact force model, considering the change of contact state due to the levitating force;
(3) Investigating the influence of shrink-fit interference and the contact length on the system response and its stability by numerical

simulation and experiment validation;
(4) Proposing a stable region using combinations of shrink-fit parameters on the assembly conditions based on the results of sta-

bility analysis.

After this introduction, the experimental system studied will be presented, then we will introduce the modelling of a rotor-AMBs
system and the shrink-fit assembly (with contact stiffness model) will be presented. In Section 4, the identification of contact interface
properties, numerical simulation and experimental validation will be discussed. the system stability will be then analyzed. The rec-
ommendations and conclusions will be addressed at the end.

2. Description of the system studied

The test rig is constituted with a steel shaft of 1.004 m length and 46 mm of diameter for a total weight of 10.35 kg (Fig. 1). It is
supported by two identical AMBs powered in differential driving mode, with 8 poles and the action lines are positioned in the
configuration load between axes. The bias current is 1.7 A and 0.25 mm for the air gap. Each AMB is supplied with a touch down
bearings (TDBs) with 0.125mm air gap, and two non-colocalized eddy current sensors. The AMBs are designed to generate a maximum
dynamic force of 412 N. The AMB located in the middle is used as an Electro-Magnetic Actuator (EMA) and was not activated in this
work and did not generate force. For the needs of this study, a shrink-fitted disk is assembled at the non-drive end. Since the study is
carried out only during levitation, the rotor is not connected to the motor.

A PID (proportional-integral-derivative) controller is designed to stabilize the rotor-AMBs system and implemented on the dSPACE
platform (DS1202, sampling frequency is 10 k Hz). An amplifier is used with 0.4 gain and 800 Hz cut- off frequency. AMBs, sensors and
amplifier were designed and manufactured in the lab.

In order to assess the influence of interference and contact length, several aluminum alloy disks with a fixed outer diameter (Dro =

16.008 mm) and different inner diameters Ddi and different thickness Ld are manufactured by high-precision grinding machine
(Fig. 2a). The inner diameters are measured by using an aperture tool with a measurement accuracy of 1 μm (Fig. 2b). The shrink-fit
interference is 4, 5.5, 6.5, 7.5 and 9 μm. The contact length Ls is equaled disk’s thickness, we can manufacture the disk with different
contact lengths. Due to experimental limits, we manufactured the disks of the contact length within the range from 2 mm to 4 mm. The
aim of the experiment using these disks is to assess the accuracy of the model and to predict the system response. To reduce the cost, we
consider the contact lengths of 2, 3, and 4 mm in the experimental part.

Firstly, in order to identify which mode was affected by the shrink fit, the natural frequencies of the rotor were identified by using

Fig. 2. The diagram of shrink-fit disks.
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modal testing. The rotor was suspended with three flexible tapes. An acceleration (PCB 352C65) was fixed on the laminations of AMB B
(Fig. 3). The rotor was impacted at different position with an impact hammer (PCB 086C01).

The measured forces and accelerations for each impact was then processed by using OROS-36 data acquisition and signal pro-
cessing system. The sampling frequency was 51.2 kHz that cover largely the frequency band studied. The results obtained for several
disk thickness and for a fixed interference of 6.5 μm radial interference are presented in Table 1.

Form the results obtained, the most affected mode is 4th bending mode. When increasing the disk thickness from 3 mm to 4 mm, it
has no significant effects. We did not make higher thickness since they were difficult to be assembled.

Fig. 3. Modal testing layout.

Table 1
Rotor bending natural frequencies.

Bending modes Frequency (Hz):
2 mm disk thickness

Frequency (Hz):
3 mm disk thickness

Frequency (Hz):
4 mm disk thickness

1 93.08 92.69 92.23
2 261.59 260.32 258.89
3 534.69 531.32 525.65
4 947.02 861.72 857.87

Fig. 4. Schematic diagram of the interface contact model formed by shrink fit.
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3. Modelling of rotor-AMBs system considering shrink fit interface contact

The modelling approach of the interface contact formed by the shrink-fit assembly will be presented first, then the rotor-AMBs
system model will be describe.

3.1. Shrink fit interface contact model

The interface contact in the rotor is modeled as a uniformly distributed stiffness over the contact interface as shown in Fig. 4(a),
where the disk and the rotor are joined together by shrink fit assembly. Each node in the outer surface of rotor (Node C) is connected to
its corresponding node in the inner surface of disk (Node D) by the spring unit. The stiffness of the massless spring unit is referred to as
the contact stiffness. The contact stiffness can be subdivided into the normal contact stiffness ksf and the tangential contact stiffness ksq.
The directions of ksf and ksq are perpendicular and parallel to the contact interface, respectively.

There is relative displacement between the contact interfaces when the rotor vibrates. The energy generated by the spring
deformation is calculated according to the energy principle of a spring unit Δu that can be obtained by the linear superposition of the
change of the spring potential energy in the x ,y and z directions as:

Δu = Δux +Δuy +Δuz =
1
2

⋅ ksf Δx2+
1
2

⋅ ksf Δy2 +
1
2

⋅ ksqΔz2 (1)

where Δx, Δy and Δz represent the deformation of the spring unit in the x ,y and z directions, respectively.
In the shrink fit assembly, the center node of the rotor is node p and the center node of the disk is node q. The generalized co-

ordinates of centers p and q are (xp,yp,αp,βp,zp) and (xq,yq,αq,βq,zq), respectively in absolute coordinates o-xyz. x ,y, z are the trans-
lations, α, β are the rotations. The subscript p is for node p, and q is for node q (Fig. 4).

By establishing the floating coordinate of node p and node q as shown in Fig. 4(b), Δx2, Δy2 and Δz2 are obtained in the absolute
coordinate system oxyz as Appendix A.

The total energy Us generated by the spring unit is obtained by summing up the unit spring energy Δu as follows

Us =

∫∫

A

1
2
(
ksf Δx2 + ksf Δy2 + ksqΔz2

)
dA =

∫ Lsr

− Lsr

dl
∫ 2π

0

1
2
(
ksf Δx2 + ksf Δy2 + ksqΔz2

)
Rsdθ

= 2πRsLsrksf

[
(
xq − xp

)2
+
(
yq − yp

)2
]

+

(
2
3

πRsL3srksf + πR3
s Lsrksq

)[(
αq − αp

)2
+
(
βq − βp

)2
]

(2)

where Rs is the nominal radius of the shrink-fit contact and Ls is the shrink-fit contact length (Ls = 2Lsr). A denotes the contact
region, when the two interfaces are fully in contact, its area is given by Aa = 2πRsLs. The total energy Us can be transformed as Eq. (3).
According to the Lagrange equation, the contact stiffness can be obtained [2425].

Us =
1
2

[
qp
qq

]T

KEs

[
qp
qq

]

,KEs =

[ diag( vc vc vd vd ) − diag( vc vc vd vd )

− diag( vc vc vd vd ) diag( vc vc vd vd )

]

(3)

where vc = 4ksf•πRsLsr, vd = 4ksf πRsLsr
3/3 + 2ksq•πRs

3Lsr, KEs is the equivalent contact stiffness matrix, qp is (xp,yp,αp,βp)T, qq is (xq,
yq,αq,βq)T.

The force vector Fsc generated by the interface can be obtained by calculating the partial derivative of the energy Us with respect to
the variable Δxqp (Δxqp = xq-xp), Δyqp (Δyqp = yq-yp), Δαqp (Δαqp = αq-αp), Δβqp (Δβqp = βq-βp)

Fig. 5. Schematic diagram of the actual contact status between the rotor and the disk.
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Fsc =

⎡

⎢
⎢
⎢
⎣

∂Us/∂Δxqp

∂Us/∂Δyqp

∂Us/∂Δαqp

∂Us/∂Δβqp

⎤

⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎣

Fsx

Fsy

Fsα

Fsβ

⎤

⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ksf

∫∫

A
dA ⋅ Δxqp

ksf

∫∫

A
dA ⋅ Δyqp

∫∫

A

(
ksf l2 + ksqR2

s sin
2θ
)
dA ⋅ Δαqp

∫∫

A

(
ksf l2 + ksqR2

s cos
2θ
)
dA ⋅ Δβqp

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ksx

(
qp, qq

)
⋅ Δxqp

Ksy

(
qp, qq

)
⋅ Δyqp

Ksα

(
qp, qq

)
⋅ Δαqp

Ksβ

(
qp, qq

)
⋅ Δβqp

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= diag
[
Ksx Ksy Ksα Ksβ

]
⋅ [diag( − 1) diag(1) ] ⋅ Teqr = Ks ⋅ Teqr

(4)

where the value of Ksx, Ksy, Ksα, Ksβ are all related to qp and qq.
However, the rotor and disk interfaces are not fully contacted during levitation and the contact region varies with rotor dis-

placements at the contact surfaces [141626]. Thus, the integral domain in Eq. (4) is time-variant. It is assumed that the contact
interface is partly separated as shown in Fig. 5. The blue line ls1 is formed by the intersection of the outer surface of the rotor and the
inner surface of the disk. And the red lines ls2 are the lines formed by the intersection of the end faces of the rotor and the inner surface
of the disk. The contact surface is divided into contact region and separated region by these lines. As shown in Fig. 6, we expand the
rotor outer surface along the circumferential direction. The contact region is enclosed by z3(θ3) (the line ls1 function) and W1(θ3),
W2(θ3) (line ls2 functions). The variables Ksx, Ksy, Ksα, Ksβ can be expressed as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ksx

(
qp, qq

)
=

∫ z3(θ3)

W1(θ3)

∫ θ32

θ31
ksfRsdθ3dl +

∫ W2(θ3)

z3(θ3)

∫ θ31+2π

θ32
ksfRsdθ3dl

Ksy

(
qp, qq

)
=

∫ z3(θ3)

W1(θ3)

∫ θ32

θ31
ksfRsdθ3dl +

∫ W2(θ3)

z3(θ3)

∫ θ31+2π

θ32
ksfRsdθ3dl

Ksα

(
qp, qq

)
=

∫ z3(θ3)

W1(θ3)

∫ θ32

θ31

(
ksf l2 + ksqR2

s sin
2θ3

)
Rsdθ3dl +

∫ W2(θ3)

z3(θ3)

∫ θ31+2π

θ32

(
ksf l2 + ksqR2

s sin
2θ3

)
Rsdθ3dl

Ksβ

(
qp, qq

)
=

∫ z3(θ3)

W1(θ3)

∫ θ32

θ31

(
ksf l2 + ksqR2

s cos
2θ3

)
Rsdθ3dl +

∫ W2(θ3)

z3(θ3)

∫ θ31+2π

θ32

(
ksf l2 + ksqR2

s cos
2θ3

)
Rsdθ3dl

(5)

We need to know W1(θ3), W2(θ3) and z3(θ3) to calculate the contact force. The details can be seen in Appendix B and C.

3.2. Calculation of the normal and the tangential stiffness

The contact stiffness model of shrink-fit interfaces is established based on the elastic–plastic contact model. It enables the deter-
mination of the relationships among contact stiffness, the contact length and the shrink-fit interference.

3.2.1. Shrink-fit microscopic contact model
According to [21], the pressure produced by the shrink fit can be calculated as follows

Pc =
δc

Rs

[
1
Ed

(
R2do+R2s
R2do − R2s

+ νd

)

+ 1
Er

(
R2s +R2ri
R2s − R2ri

− νr

)] (6)

where Pc is the shrink-fit pressure, Ed and Er are respectively the Young modulus of the disk and the rotor, the υd and υr are
respectively the Poisson’s ratio of the disk and the rotor, the δc is the static interference of the shrink-fit assembly, the Rdo is the disk’s
outer radius (Ddo/2), the Rri is the inner radius of the rotor (Dri/2).

The normal load Fn of the contact surface can be expressed as

Fig. 6. Schematic diagram of the actual contact status between the rotor and the disk.
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Fn = Pc × Aa = 2πRsLsPc (7)

A graphical representation of the simplified contact and the deformation geometry of an individual asperity is given in Fig. 7., the
contact behavior of two rough surfaces (rotor and disk contact interfaces) can be simplified as the contact of an equivalent rough
surface and a rigid surface.

The fractal theory is used to describe the random features of the contact interface, facilitating the calculation of the normal and
tangential contact stiffness based on contact theory. According to [27], the two-dimensional rough surface profile can be described by
the improved Weierstrass-Mandelbrot (W-M) function as

z1(xʹ) = L(G/L)D− 1
(ln1.5)0.5

∑imax

i=0
1.5(D− 2)n

[
cosϕ1,i − cos

(
2π ⋅ 1.5nxʹ/L − ϕ1,i

) ]
(8)

where z1(x’) is the rough surface height and x is the lateral distance, D is the fractal dimension (1 < D < 2) and G is the fractal
roughness, L represents the sample length of surface profile, i is the frequency index and imax corresponds to the high cutoff frequency
of the profile, ϕ1,i denotes the phase that is chosen randomly, and x’ is the coordinate along the surface. The deformation of an in-
dividual asperity can be expressed as

δ = 2GD− 1(ln1.5)0.5(2ru)
2− D (9)

where ru is the truncated radius of the undeformed asperity (Fig. 7).
According to the deformation geometry of an individual asperity, the relationship between δ and ru is given by Rc

2- (Rc
2-δ2) = ru2 =

au/π and Rc ≫ δ, in which au is the truncated area of the microcontact. The radius of the curvature of the microcontact can be derived as

Rc = 2D− 4G1− D(ln1.5)− 0.5(au/π)0.5D (10)

The asperities of the rough surface with different heights will generally be in two deformation states: fully elastic deformations and
fully plastic deformations. Based on Hertz contact theory, the relationship between normal contact load pe and the local normal
deformation δ for a single microcontact in elastic contact regime can be expressed as

pe(au) =
4
3
ER0.5

c δ1.5 =
24.5− D

3π1.5− 0.5DEGD− 1(ln1.5)0.5(au)
1.5− 0.5D (11)

where E is the equivalent elastic modulus, 1/E=(1-vr
2)/Er+(1-vd

2)/Ed.
The normal contact load of a single microcontact with plastic deformation can be expressed as

pp(au) = 2.8σsau (12)

where σs is the yield strength of the disk material.
According to [28], the size distribution function n(au) of microcontacts is given by

n(au) = 0.5Dψ1− 0.5Da0.5D
ul a− 0.5D− 1

u (13)

where aul represents the maximum truncated area of the microcontact. The domain extension factor ψ can be calculated based on
the following equation,

(
1+ ψ − 0.5D)(D− 2)/D = (2 − D)/D (14)

To sum up, the relationship between the normal load of the shrink-fit assembly and the maximum real contact area arl of the
microcontact is given by

Fig. 7. Schematic diagram of the contact surface, and the deformation geometry of an individual asperity.
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Fn =

∫ aul

auc

pe(au)n(au)dau +

∫ auc

0
pp(au)n(au)dau

=
26− 1.5DDE(ln1.5)0.5GD− 1ψ1− 0.5D

3π1.5− 0.5D(3 − 2D)
a0.5D

rl
[
a1.5− D

rl − a1.5− D
rc

]
+
2kσsDψ1− 0.5D

2 − D
a0.5D

rl a1− 0.5D
rc

(15)

where arc represents the critical real contact area demarcating the elastic and plastic regimes, given by arc = G2/(1.4σs/E)2/(D− 1). By
Hertz contact theory, the critical truncated contact area auc is determined by auc = 2πRcδuc and the relationship between auc and the real
critical contact area arc can be concluded as auc = 2arc. On the other hand, the maximum real contact area arl can be expressed as arl =

(2-D)ψ0.5D− 1Arc/D, where Arc is the real contact area of the contact surface. Likewise, the relationship between arl and the maximum
truncated contact area aul is given as aul = 2arl.

With Fn calculated earlier, we can obtain the maximum real contact area arl from Eq. (15). This step is to obtain the real contact area
distribution, which will be used to determine the distributions of contact stiffness.

3.2.2. Shrink-fit contact stiffness model
The total contact stiffness is determined by integrating the stiffness of each interacting microcontact with the size distribution

function of microcontacts shown in Fig. 7. By differentiating Eq. (11), the normal contact stiffness for a single microcontact in contact
with a rigid plane could be written as

kn =
dpe

dδ
=

(
2au

π

)0.5

E (16)

Thus, the total normal contact stiffness is given by

Kn =

∫ aul

auc

knn(au)dau =
2DE

π0.5(1 − D)
ψ1− 0.5Da0.5D

rl
[
a0.5− 0.5D

rl − a0.5− 0.5D
rc

]
(17)

The equivalent elastic deformation in the tangential direction for a single micro-contact interacting with a rigid plane is

τ =
3μfn

16G(au/2π)0.5
[
1 − (1 − ft/μfn)2/3

]
(18)

where fn and ft represent the normal and tangential contact loads acting on a single microcontact, G is the equivalent shear modulus,
1/G=(2-vr)/Gr+(2-vd)/Gd, Gr and Gd are the shear moduli of the rotor and disk, respectively, and μ denotes the friction coefficient.

By differentiating Eq. (18), the tangential contact stiffness for a single microcontact interacting with a rigid plane is given by

kt =
dft
dτ = 4 ⋅

(
2au

π

)0.5

G
(

1 −
ft

fnμ

)1
3

(19)

Thus, the total tangential contact stiffness is given by

Kt =

∫ aul

auc

ktn(au)dau =
8DG

π0.5(1 − D)
ψ1− 0.5Da0.5D

rl
[
a0.5− 0.5D

rl − a0.5− 0.5D
rc

]
(20)

Assuming that the normal and tangential stiffness are uniformly distributed over the contact interface, the stiffness of each spring
unit can be expressed as

{
ksf = Kn/Aa = Kn/2πRsLs
ksq = Kt/Aa = Kt/2πRsLs

(21)

Fig. 8. Schematic diagram of the rotor-AMBs system considering shrink-fit interface contact.
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3.3. Rotor-AMBs model

The model of rotor-AMBs system considering interface contact consists of three parts as shown in Fig. 8: the contact stiffness model,
the shrink-fit model and the rotor-AMBs model. In section 3.1, the effect of shrink-fit interface contact is modelled as the contact force
Fsc acted on the rotor-AMBs model. In section 3.2, the shrink-fit contact stiffness applied in shrink-fit model is calculated under
different contact length Ls and shrink-fit interference δc based on the microscopic contact model. In section 3.3, the rotor-AMBs model
is established based on previous work.

Finite element method is used. The shaft is modeled with 63 Bernoulli-Euler beam elements with two nodes and four degree of
freedom (DOF) per node. Two radial translations and two associated rotations. The axial DOF is not considered in this study. The
general equation of motion is obtained by applying Lagrange equation [29]. Based on Eq. (3) and Eq. (4), the contact stiffness matrix
KEs and contact force vector Fsc is then added:

MRq̈r +CRq̇r +
(
KR +Te

TKEsTe
)
qr = Ta

TFAMB +Tsc
TFsc (22)

where MR, CR and KR are the mass, damping and stiffness matrices of the system, respectively. qr is the rotor displacement vector.
The force vectors FAMB represents the electromagnetic force by the AMBs A and B in the x and y directions, Ta is the transfer matrix of
the AMB nodes, Te is the transfer matrix of node p and node q, Tsc is the transfer matrix of node p.

AMBs are used to levitate the rotor and the Fig. 9 recalls all the required electromechanical components (including the electro-
magnet, the power amplifier and the controller), to generate the attractive magnetic force famb along the action line. The control
current ia is provided by the controller according to the measured rotor relative displacement with respect to the center of AMBs.
According to the fundamental formula of the electromagnetic force [1], famb is linearized as

famb =
μ0AmN2

c cosα0
4

[(
I0 + ia

C0 − xcosα0

)2

−

(
I0 − ia

C0 + xcosα0

)2
]

≈
μ0AmN2

c I20cos2α
C3
0

x+
μ0AmN2

c I0cosα
C2
0

ia = khx+ kiia (23)

where μ0 the permeability of vacuum,Am the area of one pole,Nc the turns per coil of a pair of poles, C0 the radial air gap, xcosα0 the
actual variation of the air gap in the x direction. kh and ki the displacement and the current stiffness, respectively.

The eddy current sensors are modelled as the proportional component which transform the displacement to voltage, and the gain of
sensor model is ks.

The amplifier transfer function has been verified by experimental results and is expressed as [1]:

A(s) =
ka
(
2πfz

)

s +
(
2πfz

) (24)

where ka is the gain of power amplifier, fz is the cut-off frequency.
In this work, a PID controller is used to ensure stable levitation of the rotor, it has the transfer function of

C(s) = KP +
KI

s
+

KDs
TDs + 1

(25)

where KP, KI and KD respectively represents the proportional, the integral and the derivative gains, TD is the derivative time
constant to prevent magnifying the error signal by the controller in the high frequency ranges.

Substituting Eq. (23) into Eq. (22), the state space model of the rotor-AMBs system considering the interface contact can be
expressed as Eq. (26) by taking {xs} = [qr q̇r]

T.

Fig. 9. Structure and principle of a radial AMB.
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⎧
⎨

⎩

{

ẋs

}

= [As]{xs} + [Bs]ia + [Bsc]Fsc

{qs} = [Cs]{xs}

[As] =

[
0256×256 I256×256

M− 1
R
(
khTT

a Ta − KR − TT
e KEsTe

)
− M− 1

R CR

]

; [Bs] =

[
0256×4

kiM− 1
R TT

a

]

; [Bsc] =

[
0256×4
M− 1

R TT
sc

]

;

[Cs] = [Ts 0256×4 ] (26)

where {xs} is the state vector, qs is the displacement of the sensor nodes in the x and y directions, and Ts is the transfer matrix of the
sensor nodes.

When the rotor is levitated stably, an external random excitation induced by the whole arrangement of electronic devices used,
leading to micro vibrations with a maximum displacement amplitude is about 1 μm. The noise in the closed-loop is unavoidable in
experimentation. Therefore, in the numerical simulation, white noise excitation is added to the feedback path.

4. Results

Experiments were done in order to estimate the shrink fit parameters. Then results stemming from numerical simulation and
experiments were compared in order to validate the model developed. Experiments and numerical simulations were performed with
the same conditions: for a given parameter for the shrink fit (shrink-fit interference δc and contact length Ls), levitate the rotor by using
the AMBs and inducing white noise exciting to simulate the electronic noise observed experimentally. Once the model developed was
validated, the stability analysis could be performed.

4.1. Shrink-fit parameters estimation and validation

To obtain the accurate relationship between contact stiffness, shrink-fit interference and contact length, it is necessary to estimate
the fractal dimension D and the fractal roughness G. These two fractal parameters are identified based on the PSD (Power Spectral
Density) function [30]. The PSD of the surface profile can be expressed as

logP
(
ωp

)
= (2D − 5)log

(
ωp

)
+(2D − 2)logG − log(ln1.5)+ (4 − 2D)logπ +(3 − 2D)log2 (27)

where P denotes the PSD and ωp is the wavevector of surface profile.
The inner surface topography is measured using a roughness measuring instrument (MarSurf PS 10) shown in Fig. 10. The surface

profile height of disk’s inner surface was measured (Fig. 11(a)). The PSD evolution along the contact surface was obtained by using the
least square curve fitting method (Fig. 11(b)).

The different values of the fractal dimension and the fractal roughness obtained are presented in Appendix D. For the numerical
simulation, the average values were used: 1.454 for D and 0.973 × 10− 10 m for G. The normal and the tangential contact stiffness are
then calculated (presented in Appendix E). It can be noticed that the stiffness increases with the increase of the shrink-fit parameters (δc

Fig. 10. Disposition for the surface profile measurement.

Fig. 11. Measurement and parameters estimation. (Ld = 4 mm, Ddi = 15.995 mm).
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and Ls). During the repetitions of shrink-fit assembly, the possible wear in contact surfaces may be caused which results in the un-
certainty of the shrink-fit estimation. Several repeated experiments were done to check the influence of uncertainty on shrink-fit
estimation. The relative errors were small and the maximum relative error of 0.14 % in fractal dimension and of 3.49 % in fractal
roughness were observed. The uncertainty in the identification of shrink-fit fractal parameters has little influence on the calculation of
contact stiffness.

Fig. 12. Comparison of time-domain responses in simulation and experiment (different interferences).

Fig. 13. Comparison of frequency-domain responses in simulation and experiment (different interferences).

Fig. 14. Comparison of time-domain responses in simulation and experiment (different contact lengths).
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4.2. Dynamic analysis and model validation

To study the influence of the shrink fit parameters on the system, appropriate control parameters should be tuned to ensure stable
levitation of the rotor without shrink-fit interface contact and these parameters will be kept the same during different experimental
phases to exclude the influence of the controller (presented in Appendix D). The PID parameters were tuned experimentally. Same
parameters were applied in numerical simulation. The identified values were: KP = 1.7, KI = 1, KD = 0.0006, TD = 0.0001. Same
sampling frequency (10 kHz) was used in both, numerical simulation and experiments, which satisfies the standards recommendations
of sampling frequency in rotor-AMBs system [31].

The displacement responses in time and frequency domain in x direction for both AMBs (A and B) are presented in Fig. 12 and
Fig. 13 for the median value of Ls (3 mm) and different values of δc.

Fig. 15. Comparison of frequency-domain responses in simulation and experiment (different contact lengths).

Fig. 16. Comparison of the vibration amplitude at the position of AMB A (different shrink-fit interferences and contact lengths).

Fig. 17. Comparison of the vibration amplitude at the position of AMB B (different shrink-fit interferences and contact lengths).
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Same general trends are observed in both numerical simulations and experiments. The model developed describes closely the
dynamic behavior of the system studied in the frequency range of interest. In this study, we are interested in the behavior around the
4th bending mode that presents instabilities. Similar behavior could be observed in both. The amplitude of the response increases as δc
increases. The system model seems to be more damped. Same trends are observed in y direction.

When δc is 6.5 μm (the median value), varying Ls from 2mm to 4 mm, the response amplitude of the 4th bending mode increases, as
shown in Fig. 14 and Fig. 15. We can also observe that increasing Ls shifts the 4th bending mode frequency toward lower values and the
energy induced by the interface contact has greater impact on the dynamic behavior near AMB A (near the shrink-fitted disk). Those
observations should be considered when adjusting the controller parameters. Here also the model describes closely the behavior
observed experimentally. Same trends are observed in the y direction.

To sum up, the amplitude of the response increases and the instability intensifies with the increase of δc and Ls. To further validate
the reliability of the model developed, the theoretical and experimental rotor 4th bending mode amplitude under different shrink-fit
interferences and contact lengths are shown in Fig. 16 and Fig. 17, respectively. Same general trends are observed numerically and
experimentally. The difference between the vibration amplitude at AMB B is larger in experiment results, however the effect of shrink-
fit has less influence at this position. It should be noted that, the aim of this study was to understand phenomena that induce the
instability and to point out the parameters that influence these phenomena. We didn’t try to adjust the model parameters to reproduce
closely the vibration amplitudes, that will be done in the future. Due to several repetitive shrink-fit procedures made, there may be
modifications and wear in the rotor surface (that we didn’t quantify in this study). Small differences were observed for the different
results measured.

4.3. Stability analysis

The root locus analysis is applied to study how the shrink-fit assembly influence the stability of rotor-AMBs system. Based on Eq.
(4), the contact force can be expressed as Fsc = Ks•Te•qr. The control current can be expressed as ia = Hs•qs = Hs•Ts•qr. Consequently,
the state space in Eq. (26) can be transformed as:

Asr =

[
0 I

M− 1
R
(
khTT

a Ta − KR − TT
e KEsTe + kiTT

a HsTs + TT
scKsTe

)
− M− 1

R CR

]

(28)

The closed-loop system eigenvalues λ can be calculated as:

det(λI − Asr) = 0 (29)

As Asr is dependent on the shrink-fit interference and the contact length, therefore, different eigenvalues λ will result for the
different combination of the shrink-fit parameters. The root locus of the eigenvalues for the different combinations studied were
calculated (Fig. 18).

The root locus of the system closed-loop is calculated for the configuration the contact length 3 mm and for different values of δc
(Fig. 18a). When no shrink-fit applied, all roots of the system are stable, and that what is observed experimentally. On the other hand,
when applying the shrink-fit, it can be noticed that the roots for the first two bending modes still stable for different values of δc, but the
roots for the 3rd and 4th modes move toward unstable locus. However, and as it can be seen on Fig. 15, the amplitude of the 3rd mode
is too small to influence the stability of the system.

The root locus of the system closed-loop is also calculated for the configuration shrink-fit interference 3 mm and different contact
length values (Fig. 18b). The same trends are observed.

It is obvious that to maintain the system stable, the controller should be able to mitigate the 4th bending mode over its frequency
range variation.

Stemming from the root locus analysis, variables δc and Ls influence system stability. For further design optimization aiming at

Fig. 18. Root locus of the closed-loop system.
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decreasing the influence of the shrink-fit interface contact, stable region can be obtained to guide the safe operation (Fig. 19). The
stable parameter combinations of shrink-fit interference δc and contact length Ls are specified based on the real parts of the 4th bending
mode roots.

5. Conclusions

The aim of this research work is to investigate numerically and experimentally the instability caused by shrink-fit interface contact
in a rotor-AMBs system and to identify the parameters that influence this instability.

The instability is due to the relative displacement between the contact surfaces of rotor and disk when the rotor is levitated. The
shrink-fit assembly introduces discontinuity in the contact and contact force arises from this relative displacement. Moreover, the rotor
and the disk interfaces are not fully in contact when the rotor is levitated. The actual area of contact interface decreases with the
increase of the vibration amplitude, resulting in the decrease of the contact force. The normal and the tangential contact stiffness were
calculated by using the contact characteristics identified experimentally.

The unstable zones are identified as a function of the shrink-fit interference and the contact length. The influencing parameters
were pointed out, and their effects on the system dynamic behavior was studied. Based on the simulation and experimental results
under different shrink-fit interferences and contact lengths, the instability is induced by the effect of shrink-fit parameters on the roots
of the 4th bending mode. From the stability analysis results, the increase of shrink-fit interference and the contact length, moves the
roots of the 4th bending mode to the unstable zone and leads to an increase of the vibration amplitude. Increasing the contact length
shifts the 4th bending mode frequency toward lower values, this fact should be considered when designing the controller in the future.
Based on stability analysis results and reliable model, the stable parameter combinations of shrink-fit parameters are specified to guide
the safe operation.

The model developed is able to reproduce the overall dynamics in the frequency range of interest and the main observed phe-
nomenon which provides reliable prediction of the dynamic behavior of the studied system. This model will be used to conduct further
investigations on the optimal design of the shrink-fit assembly and the developing of efficient robust controller to suppress this
vibration.
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Appendix A

The coordinates of Node C and Node D can be expressed as in the absolute coordinate system oxyz as
⎧
⎨

⎩

xC = xp + l ⋅ sinαpcosβp + Rscosθcosβp
yC = yp + l ⋅ sinβp + Rscosθsinβpsinαp + Rssinθcosαp
zC = zp + l ⋅ cosαpcosβp − Rscosθsinβpcosαp + Rssinθsinαp

(A.1)

⎧
⎨

⎩

xD = xq + l ⋅ sinαqcosβq + Rscosθcosβq
yD = yq + l ⋅ sinβq + Rscosθsinβqsinαq + Rssinθcosαq
zD = zq + l ⋅ cosαqcosβq − Rscosθsinβqcosαq + Rssinθsinαq

(A.2)

The deformation of the spring unit Δx, Δy andΔz in the absolute coordinate system are calculated by the coordinates of node C and
node D as,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Δx = xD − xC
= xq − xp + l

(
sinαqcosβq − sinαpcosβp

)
+ Rscosθ

(
cosβq − cosβp

)

Δy = yD − yC
= yq − yp + l

(
sinβq − sinβp

)
+ Rscosθ

(
sinαqsinβq − sinαpsinβp

)
+ Rssinθ

(
cosαq − cosαp

)

Δz = zD − zC
= zq − zp + l

(
cosαqcosβq − cosαpcosβp

)
+ Rscosθ

(
cosαpsinβp − cosαqsinβq

)
+ Rssinθ

(
sinαq − sinαp

)

(A.3)

Considering the first-order Taylor expansion of sinx is x , and the first-order Taylor expansion of cosx is 1, (αqβq-αpβp) and (zq-zp) are
much smaller, Δx, Δy and Δz can be approximated as

⎧
⎨

⎩

Δx = xD − xC ≈ xq − xp + l
(
αq − αp

)

Δy = yD − yC ≈ yq − yp + l
(
βq − βp

)

Δz = zD − zC ≈ Rscosθ
(
βp − βq

)
+ Rssinθ

(
αq − αp

) (A.4)

Then Δx2, Δy2 and Δz2 are expressed as
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Δx2 =
(
xq − xp

)2
+ l2

(
αq − αp

)2
+ 2l

(
xq − xp

)(
αq − αp

)

Δy2 =
(
yq − yp

)2
+ l2

(
βq − βp

)2
+ 2l

(
yq − yp

)(
βq − βp

)

Δz2 = R2
s cos

2θ
(
βq − βp

)2
+ R2

s sin
2θ
(
αq − αp

)2
+ 2R2

s sinθcosθ
(
αq − αp

)(
βp − βq

)

(A.5)

Appendix B

The plane OR can be obtained by coordinate transformation as follows
⎧
⎪⎪⎨

⎪⎪⎩

xʹ
3 = x3cosΔβpq + y3sinΔαpqsinΔβpq − z3cosΔαpqsinΔβpq

yʹ
3 = y3cosαpq + z3sinαpq

ź3 = x3sinβ − y3sinαpqcosΔβpq + z3cosαpqcosΔβpq

(B.1)

The parametric equation of the rotor’s outer surface can be expressed as

{ x3 = Rscosθ3
y3 = − Rscosθ3

{
xʹ
3 = Rscosθʹ

3

yʹ
3 = − Rscosθʹ

3
(B.2)

Submitting Eq. (B.2) to Eq. (B.1), we can get
{

Rscosθʹ
3 = x3cosΔβpq + y3sinΔαpqsinΔβpq − z3cosΔαpqsinΔβpq

− Rscosθʹ
3 = y3cosαpq + z3sinαpq

(B.3)

Since [Rscos(θ3)]2 + [-Rssin(θ3)]2 = 1, the implicit function relationship between the z3 and θ3 can be expressed as
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R2
s cos

2θ3cos2βpq + 2R2
s cosθ3sinθ3cosβpqsinαpqsinβpq + R2

s sin
2θ3cos2αpq+

R2
s sin

2θ3sin2αpqsin2βpq − R2
s + 2Rssinθ3 ⋅ z3(θ3)sinαpqcosαpqcos2βpq−

2Rscosθ3 ⋅ z3(θ3)cosαpqcosβpqsinβpq + z23(θ3)sin
2αpq + z23(θ3)cos

2αpqsin2βpq = 0

(B.4)

The implicit function is simplified to explicit function as

z3(θ3) =

±

⎡

⎢
⎢
⎢
⎣

⎛

⎜
⎜
⎜
⎝

R2
s − 2R2

s cosθ3sinθ3cosβpqsinαpqsinβpq−

R2
s sin

2θ3sin2αpqsin2βpq − 2R2
s sinθ3cosθ3sinβpq

+R2
s cos

2θ3sin2βpq − R2
s cos

2θ3cos2βpq

⎞

⎟
⎟
⎟
⎠

0.5

+ Rscosθ3sinβpq − Rssinθ3

⎤

⎥
⎥
⎥
⎦

cosαpqsinβpq
(B.5)

Appendix C

The equations describing planes PA and PB in the absolute coordinate can be expressed as.
{

A33x3 + B33y3 + C33z3 + 1 = 0
A44x3 + B44y3 + C44z3 + 1 = 0 (C.1)

where A33, B33, C33. A44, B44, C44 are all unknown coefficients. These coefficients can be obtained by taking the coordinates of three
arbitrary points on one plane. Taking the plane PB for example, the three points PB1(xB1, yB1, zB1), PB2(xB2, yB2, zB2), PB3(xB3, yB3, zB3)
are as follows,

⎧
⎪⎪⎨

⎪⎪⎩

xB1 = LsrsinΔαpqcosΔβpq, yB1 = LsrsinΔβpq, zB1 = LsrcosΔαpqcosΔβpq

xB2 = LsrsinΔαpqcosΔβpq + RscosΔβpq, yB2 = LsrsinΔβpq + RssinΔαpqsinΔβpq,

zB2 = LsrcosΔαpqcosΔβpq − RssinΔβpqcosΔαpq

xB3 = LsrsinΔαpqcosΔβpq, yB3 = LsrsinΔβpq + RscosΔαpq, zB3 = LsrcosΔαpqcosΔβpq + RssinΔαpq

(C.2)

Since the nodes on the inner surface of the disk can be expressed as: x32 + y32 = Rs
2. The coordinate (x, y) on the line ls2 can be

transformed to (Rscosθ3, Rssinθ3). The intersecting lines can be expressed as
{W1(θ3) = − (A33Rscosθ + B33Rscosθ3 + 1)/C33 (θ31 ≤ θ3 < θ32)

W2(θ3) = − (A44Rscosθ + B33Rscosθ3 + 1)/C44 (θ32 ≤ θ3 < θ31 + 2π)
(C.3)

Appendix D

The fractal parameters of disks with different contact radius are:

Thickness (mm) Inner diameter (mm) Fractal dimension D Fractal roughness G (m)

2 16.000 1.457 1.02 × 10− 10

2 15.997 1.451 0.95 × 10− 10

2 15.995 1.454 1.05 × 10− 10

2 15.993 1.451 0.93 × 10− 10

2 15.990 1.457 0.86 × 10− 10

3 16.000 1.455 0.92 × 10− 10

3 15.997 1.454 0.96 × 10− 10

3 15.995 1.458 0.89 × 10− 10

3 15.993 1.455 1.09 × 10− 10

3 15.990 1.451 1.06 × 10− 10

4 16.000 1.453 0.86 × 10− 10

4 15.997 1.455 0.99 × 10− 10

4 15.995 1.454 1.01 × 10− 10

4 15.993 1.451 1.03 × 10− 10

4 15.990 1.454 0.98 × 10− 10
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The detailed values of the main parameters in the simulation and experiments:
Main parameter Value

Displacement stiffness of AMB − kh 1.81 × 106N•m− 1

Current stiffness of AMB − ki 287.76 N•A− 1

Gain of the displacement sensor − ks 20000 V•m− 1

Gain of the power amplifier − ka 0.36
Cut-off frequency of the power amplifier − fz 800 Hz
Proportional gain of the PID controller − KP 1.7
Integral gain of the PID controller − KI 1
Derivative gain of the PID controller − KD 0.0006
Derivative time constant of the PID controller − TD 0.0001
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