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ARTICLE INFO ABSTRACT

Keywords: Accurate prognostics of thermal boundaries are essential for improving the precision of temperature calculations
Thermal boundary in complex turbine rotor structures. However, existing methods often rely on extensive experimental data or
Prognostics

demand substantial computational resources to determine thermal boundaries. This makes it difficult to balance
computational efficiency and accuracy, especially when dealing with complex rotor geometries or fluctuating
operating conditions. To address these challenges, this study proposes a feasible and efficient approach that
integrates numerical, statistical, and iterative techniques to predict uncertain thermal boundaries in complex
turbine rotors. Specifically, a precise finite element model of the assembled turbine rotor’s temperature field is
constructed using numerical methods. Subsequently, the temperature sensitivity of uncertain boundary param-
eters is evaluated by statistical methods. The key boundary parameters with high sensitivity are identified via the
white shark optimizer. Based on these key parameters, the temperature distribution of the turbine rotor is
predicted. Experimental results validate the high accuracy (error < 3 %) of this sensitivity-driven approach,
highlighting its viability in practical scenarios where experimental data are limited but both efficiency and ac-

Sensitivity-driven
Turbine rotor
Assembly system

curacy are essential.

1. Introduction

Accurate predictions of temperature fields are essential to ensure the
reliability of turbine rotor cooling strategies and the effectiveness of
thermoelastic coupled vibration control. Such accuracy requires precise
thermal boundary conditions [1,2]. However, in complex structures
such as aero-engine and gas turbine rotors [3], thermal boundary con-
ditions often exhibit significant uncertainties. If these parameters cannot
be predicted accurately, temperature simulation results may diverge
from actual operating conditions, even when high-precision models are
employed. Thus, developing effective strategies to predict uncertain
thermal boundary conditions is crucial for enhancing the accuracy of
temperature field reconstruction.

Extensive efforts have been made to obtain uncertain thermal
boundary conditions. These approaches include data-driven models,
numerical simulations, analytical methods, statistical analyses, and
iterative algorithms.

(1) Data-driven models use extensive experimental datasets to pre-
dict thermal boundaries without requiring precise physical modelling.
Common techniques in this category include data interpolation, deep

learning, and machine learning [4-9]. Li et al. [10,11] proposed a deep
learning regression-stratified strategy and distributed-coordinated neu-
ral network metamodel to improve the computational efficiency and
accuracy of turbine bladed disk life assessment. Although these methods
eliminate the requirement for physical models, they are highly depen-
dent on large datasets, which constrains their adaptability to different
conditions.

(2) Numerical methods have been widely applied to capture thermal
boundaries. Liao et al. [12] employed computational fluid dynamics to
analyze heat transfer coefficients within a rotor—stator disk cavity. Holz
et al. [13] conducted computational fluid dynamics—conjugate heat
transfer simulations to evaluate various thermal boundary conditions.
Martins et al. [14] used the thermal lattice Boltzmann method to
calculate Neumann boundary conditions. These numerical approaches
are effective for solving complex problems. However, these methods
require accurate modelling and uncertainties in parameters such as inlet
flow, pressure, and fluid properties may persist throughout the simula-
tion, potentially influencing the results.

(3) Analytical methods have been used to establish theoretical so-
lutions for thermal boundaries. Heinze et al. [15] derived an analytical
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lower bound for the heat transfer coefficient, while Battaglia et al. [16]
proposed an analytical approach based on mathematical modelling and
fractional-order integral theory to solve thermal boundary problems. Li
et al. [17] introduced assumptions of temperature boundary conditions.
Liu et al. [18] directly derived an analytical solution for the thermal
boundary. However, the heat transfer coefficient remains an uncertain
parameter, as it depends on environmental and operating conditions,
making it challenging to define accurately using analytical methods.

(4) Statistical analyses have been employed to determine thermal
boundaries using probabilistic methods. Yang, Gaaloul, and da Silva
et al. [19-21] employed statistical methods to calculate uncertain
thermal boundaries. While these methods help account for variability,
they rely on statistical assumptions and are computationally complex.

(5) Iterative algorithms have gained increasing attention in recent
years owing to their effectiveness in handling complex boundary con-
ditions and structures. Wang et al. [22] proposed a thermal boundary
prognostics method based on particle swarm optimization and finite
element method. Song et al. [23] incorporated physical mechanisms into
the multi-objective problem for the reliability assessment of turbine
blades and proposed an extreme multi-domain transformation for
dataset processing, significantly reducing computational complexity.
Ren and Chen et al. [24,25] applied other intelligent optimization al-
gorithms to determine thermal boundaries. Tourn, Chen, Cui, and Duda
et al. [26-31] used gradient-based methods to predict thermal bound-
aries. Frackowiak et al. [32] introduced the Trefftz numerical function to
solve the inverse heat conduction problem. Mierzwiczak and Wang et al.
[33,34] used regularization methods to solve for thermal boundaries,
while Bauzin et al. [35] employed deformation measurements for in-
verse thermal boundary identification. However, this method is chal-
lenged by the complex thermoelastic coupling transfer function between
deformation and temperature, which demands high accuracy in both the
temperature field and dynamics models.

In summary, substantial progress has been made in determining
thermal boundaries. Techniques such as interpolation fitting, data-
driven machine learning, numerical simulations, analytical methods,
statistical methods, and iterative algorithms are widely employed.
However, key technical gaps remain: most current thermal boundary
estimation methods either require dense measurement data or assume
idealized, uniformly distributed boundary conditions. These assump-
tions are often impractical for assembled turbine rotors owing to their
complex structures, uncertain thermal contact characteristics, and
limited accessibility for sensor placement. Moreover, the influence of
each thermal boundary on the overall temperature distribution is rarely
quantified prior to inversion, leading to inefficient parameter estimation
and possible convergence to physically unrealistic results. In this
context, the core problem addressed in this work is: how to accurately
and efficiently estimate uncertain thermal boundary conditions in
assembled turbine rotors using only sparse experimental data.

This study proposes a sensitivity-driven method for predicting un-
certain thermal boundaries in assembled turbine rotors. The method
integrates the advantages of numerical, statistical, and iterative ap-
proaches to predict thermal boundaries using sparse experimental data.
This method is the primary innovation and contribution of the study.
Specifically, the finite element method is used to construct a physical
model of the temperature field for the turbine rotor substructures.
Thermal contact resistance (TCR) is then applied to assembly sub-
structures, obtaining an accurate temperature field model for the
assembled turbine rotor. Based on this model, a quantitative sensitivity
analysis of all uncertain thermal boundaries is conducted to identify
highly sensitive thermal boundary parameters. The white shark opti-
mizer (WSO) algorithm is subsequently employed to perform inverse
prediction of these high-sensitivity parameters. Finally, the predicted
thermal boundaries are validated by substituting them into the tem-
perature field model and comparing the results with experimental
results.
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2. Assembled turbine rotor system and experimental setup

This section describes the assembled turbine rotor system and the
experimental setup. First, the assembled turbine rotor structure used for
thermal boundary prognostics is presented. Subsequently, the heating
device and temperature data acquisition system are introduced. Finally,
experimental data collected under different operating conditions are
provided.

2.1. Assembled turbine rotor system

The geometric structure used in this study is a simplified design
inspired by the characteristics of the GE T700 turbine rotor, rather than
a full-scale replica of the actual rotor. The primary purpose of employing
the simplified rotor structure is to validate the feasibility of the proposed
thermal boundary prognostics method under experimentally control-
lable conditions, rather than to conduct a comprehensive thermal
simulation of a real turbine engine.

As shown in Fig. 1(a), the actual turbine rotor is assembled from
three components with a complex structure [36]. To enable practical
simulation and experimental investigations, a simplified assembled
rotor is developed based on dimensional analysis [37]. This design re-
tains key geometric features while ensuring that the dynamic response
reflects the essential characteristics of the actual rotor. As shown in
Fig. 1(b), the simplified model is also comprised of three substructures
connected by two assembly contact interfaces. Fig. 2 shows the test rig
constructed with the simplified assembled rotor.

The modal assurance criterion (MAC) is calculated to quantify the
similarity between mode shapes [38]:

MAGC = ("5”—"5"})2 )
(¢FE1¢FE}) (‘/’Xl(/’xj)

where ¢ denotes the i-th mode shape of the full-scale model, and ¢/
represents the j-th mode shape of the scaled rotor model. MAC values
range from O to 1, with values close to 1 indicating strong similarity
between mode shapes. As shown in Table 1, the first three modes all
exceed 0.91, and their corresponding critical speeds are proportionally
reduced.

The edges of the turbine disk are in direct contact with high-
temperature gas, while the sides of the disk are exposed to cooling
gas, resulting in a specific temperature gradient. As shown in Fig. 3, this
turbine rotor includes 19 uncertain thermal boundaries.

2.2. Heating device

A circumferentially wrapped heating structure is designed (Fig. 4),
incorporating a quartz lamp as the heating actuator. Combined with the
temperature control and data acquisition system (Fig. 5), this setup
enables precise temperature regulation.

As shown in Fig. 5, the temperature control process begins by
acquiring voltage signals from the temperature sensors, which are sent
to the transmitter. The transmitter processes these signals and forwards
them to the dSPACE controller. Finally, the controller outputs control
signals to the actuator, ensuring a circumferentially uniform tempera-
ture field for the experiment.

2.3. Experimental data collection results

Fig. 6 shows the schematic and experimental setup for the temper-
ature sensor layout. Temperature measurements are taken at nine lo-
cations on the turbine rotor surface to support thermal boundary
prognostics and validation. The sensor locations include the shaft, small
drum, small disk, large drum, large disk, and internal cavity.

The proposed method in this study is applicable to both stationary
and rotating structures. However, preliminary validation is carried out
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Fig. 1. Assembled turbine rotor system before and after simplification.

Support structure-2

Support structure-2

Assembled rotor 1
..... Cooling tube

Fig. 2. The test rig of simplified assembled rotor.

Table 1
Comparison of dynamic characteristics between full-scale and scaled models.
Mode MAC Critical Speed (rpm) Speed
Rotor before Simplified Ratio
simplification rotor
First order 0.937 7894 3848 1:0.487
Second 0.929 14,971 7483 1:0.499
order
Third order 0.910 38,683 19,689 1:0.509

using a stationary rotor owing to current limitations in temperature
measurement under rotating conditions. Consequently, two steady-state
non-rotating cases are selected for subsequent analysis. Figs. 7 and 8
show the temperatures recorded at the nine measurement points under
these two conditions.

To minimize the impact of temperature fluctuations on prediction
and validation, 5,000 temperature samples collected over 50 s are
averaged. The mean temperatures at these locations under the two
conditions are shown in Tables 2 and 3. These data are used for thermal
boundary prognostics and validation in Section 5.

The main difference between the two cases is that Case 2 features a
larger cooling hole at the left end of the heating structure compared with

Case 1. Fig. 9(a) and 9(b) show the left end of the heating structure
under Cases 1 and 2, respectively.

3. The temperature field model of the assembled turbine rotor

This section first presents the temperature field model of each sub-
structure, followed by an introduction to the TCR at the bolted in-
terfaces. The substructure models are then assembled using the TCR to
construct the temperature field model of the assembled turbine rotor.

3.1. The temperature field of the substructure

The transient heat transfer in the axisymmetric structure is governed
by the following partial differential equation:

oT k (0°T 10T T g, @
* o (? ratae ™ ?)
where T represents the temperature field, t denotes time, z and r are the
axial and radial coordinates of the axisymmetric structure respectively,
g, represents the internal heat source, k denotes the thermal conduc-
tivity, ¢, represents the constant pressure specific heat, and p is the
density.

Based on the finite element method, the axisymmetric heat transfer
equation of an element is formulated as:
K(h)"TE + NE%%E = Pi(h) (3)
where TF and {0T/dt}* represent the temperature vector and the first-
order derivative vector of temperature for an element, respectively.
K(h)E, N¥, and P(h)F denote the thermal conductivity matrix, heat ca-
pacity matrix, and temperature load vector of an element, respectively.
For the convective heat transfer boundary conditions, both the thermal
conductivity matrix K and the temperature load vector PE (shown in
Appendix A) are influenced by the heat transfer coefficient h and
ambient temperature T;. Heat transfer in turbine rotors primarily occurs
through convection. However, because this study uses radiation heating
in the experiment, the radiation boundary condition is linearized to
approximate convective heat transfer. The linearized thermal radiation
boundary condition includes an equivalent heat transfer coefficient h,
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treated as a constant under steady-state temperature conditions, and an
effective radiation temperature T;. The finite element model of the
temperature field for the three substructures can be expressed as follows:

0TS
KsTs+Ns—> =P
sTs + Ngs o s
oT,
Kp, Tp, + Np, a?l = Pp, )
oT,
Kp,Tp, + Np, 02” =Py,

where the subscripts S, D1, and Do denote the shaft, disk 1 and disk 2,
respectively.

3.2. Thermal contact resistance connected by bolts

As shown in Fig. 10, when heat transfers across a contact interface, a
temperature gradient develops owing to the presence of TCR. For a
bolted connection, the TCR is defined as [39]:

/a“ VIE + & dmex \/27EL + 28,
Ryori =
as

2k2\/Aan(a,) a

d
2k2\/Aqa.n(a;) @t

)

Qie
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Fig. 7. Experiment data under Case 1.

where n is the asperity distribution density, k is the thermal conductivity
coefficients of the structures, and A, is the nominal contact area. a;,
Qsmax, Grc, and ag denote the truncated area, maximum truncated area,
critical truncated area, and minimum truncated area of the asperity,
respectively. Their specific definitions are provided in Appendix B. The
coefficients £; and &, are defined as:

15
&= 2\/atAak<1 - \/§>

=2/ korfe (2P e (5

©

where o represents the root mean square height, while A, and A, denote
the total actual contact area and the total truncated contact area of a
single bolt. The specific expressions are provided in Appendix B.

3.3. The temperature field of the assembled turbine rotor

Thermal contact conductance (TCC) represents the heat flux con-
ducted per unit area and per unit temperature difference across the
contact interface, and it is the reciprocal of TCR. The temperature field
model of the assembled rotor is constructed by assembling the temper-
ature field models of the three substructures using TCC.

oT

KT+N—=P

ot @

where K, N, and P are the thermal conductivity matrix, heat capacity
matrix, and temperature load vector of the assembled rotor, respec-
tively. The temperature model of the assembled rotor is discretized using
triangular finite elements, comprising 1,404 nodes and 2,128 elements.

For the steady-state heat conduction problem, a direct solver based
on Cholesky decomposition is employed to solve the linear system. The
governing equation is expressed as:
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Table 2
Experiment temperature values under Case 1.
Type Temperature Type Temperature Type Temperature
(°C) C) (°C)
Measuring point 1 92.3 Measuring point 4 250.0 Measuring point 7 234.3
Measuring point 2 225.3 Measuring point 5 251.0 Measuring point 8 250.7
Measuring point 3 248.0 Measuring point 6 227.4 Measuring point 9 226.4
Table 3
Experiment temperature values under Case 2.
Type Temperature Type Temperature Type Temperature
C) “C) C)
Measuring point 1 77.1 Measuring point 4 247.4 Measuring point 7 227.9
Measuring point 2 216.1 Measuring point 5 239.9 Measuring point 8 242.2
Measuring point 3 241.4 Measuring point 6 227.3 Measuring point 9 227.0

Heatmg structure s

; Larger coohng hole

(a) Case 1

(b) Case 2

Fig. 9. Left end of the heating structure under two cases.

T="_ (8)
K
For the transient heat conduction problem, Galerkin time dis-
cretization based on the weighted residual method is employed. The
corresponding computational equation is given by:

3N 3N
(2K+ )Tt_ 2P+ Prac + (—

AL K) T a )]

where At is the time step, which is set to 0.01 s.
3.4. The parameters of the temperature model

The assembled rotor includes two bolted contact interfaces, as shown
in Fig. 11. Table 4 lists the structural and material parameters used to
calculate the temperature distribution. Aside from the fractal dimension
and fractal roughness derived from experimental data [40-42], all other
parameters are obtained from material properties, rotor geometry, or
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Fig. 10. The thermal resistance equivalent method.
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Table 5
Effective radiation temperature.

Table 4

Structural and material parameters of two contact interfaces.
Parameters Value Parameters Value
Fractal dimension of 1.6182 RMS height ¢ 1.56 x

interfaces Dy 107°

Fractal roughness of 4.1252 x Small probability value P 0.05
interfaces Gy 1077

Equivalent hardness H 2.04 GPa Nominal contact area of 4.4 x

interface MDA, 103 m?

Equivalent elastic 108 GPa Nominal contact area of 0.011 m?
modulus E interface @A,

Bolts number of 8 Thermal conductivity k 50 W/m-K
interfaces Ny,

Bolt hole inner 0.006 m Bolt hole diameter 1.125

diameter d coefficient a

empirical formulas.

Additionally, based on the radiation efficiency and characteristics of
the quartz heating lamps used in experiments, the effective radiation
temperature is first estimated. The corresponding results are shown in
the Table 5.

Parameter Effective radiation temperature
C)
Cy, Cio 27
Ca, C4, Cs, Cg, C10, C11, C12, C13, C14, C15, C16, C17, 100
Cis, Cio
Cs, Cs, C7, Co 320

4. Thermal boundary sensitivity analysis of the assembled
turbine rotor

This section first introduces the variance-based methods used for
uncertainty and sensitivity analysis. Next, the temperature objective
functions are defined. Finally, the sensitivity of thermal boundaries to
the objectives is analyzed in detail to identify boundaries with high
sensitivity.
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4.1. Sensitivity analysis method

For a temperature objective function T,, = f(C1, Ca, ..., C19), Where
Ci1,Ca,...,Cyo represent multiple uncertain boundaries, variance-based
sensitivity analysis is applied. This method entails a comprehensive
decomposition of the uncertainty associated with T,,. The variance
V(T,p) of the objective function can be expressed as:

nC nC nC
V(Tw) = Zi:l Vi+ Zi:l Zj:Hl Vij+ 4 Vizene (10)

where V; represents the contribution of input C; to total variance V(Typ),
while Vj; denotes the contribution of the interaction between C; and C;.
The term Vi;...nc accounts for the contribution from higher-order in-
teractions among all input variables Ci, Cs, ..., Cp.. To quantify the in-
fluence of C; on the output variance, the first-order sensitivity index is
defined as:

Vi V(B (TalC))

11
V(Top) V(Top) an

Si =

To quantify both the first-order and higher-order effects of C; on the
variance V(T,,), the variance-based global sensitivity index is defined as:
nC
&:w+zﬂww+m+w”“:%JWﬂW®) (12)
" V(Ta) v(T)

where C; represents the sample matrix of the factor C;, while C..; denotes
the sample matrix for all factors except C;. The variance Vg, (Ec_, (Tob|Ci))
and the mean Ec_, (Vc,(T,|C~i)) are computed from the sample matrices
and the temperature field model. These values are then substituted into
Egs. (10) and (11) to determine the sensitivity indices. To calculate the
variance and mean efficiently, the improved method proposed by Salt-
elli et al. [43] is employed:

Ve (Ba(TulC-0) = 31 f(8),(£(a3) ) ), )
13

o (Ve (TalC.)) = 5050 (Fla), —F(al), )

Therefore, the first-order sensitivity and the global sensitivity indices
are expressed as follows:

o) (£(a)), - fa), )
NV(T)

st (i, -s(ag) )
2NV(T)

Si=

14)

St =

where A and B are two independent sampling matrices, i represents the
i-th factor (i € [1,nC]), and j denotes the number of simulation (j € [1,
nS]). To calculate the variance and mean, the matrix A" is introduced,
with its detailed definition provided in Appendix C.

Variance-based sensitivity analysis employs 5,000 input samples
generated through latin hypercube sampling to ensure a comprehensive
and uniform exploration of the parameter space. Convergence is
considered achieved when incremental increases in sample size result in
fluctuations of first-order and global sensitivity indices less than 1 %,
serving as a criterion for result stability and reliability.

4.2. Sensitivity objective function

To avoid introducing subjectivity or unnecessary bias from artifi-
cially assigned weighting factors, a simple summation method is used to
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define the objective function for sensitivity analysis. This approach en-
sures consistent treatment of temperatures across different regions,
facilitating an objective evaluation of the model’s temperature response
throughout the entire boundary. It also enables more effective identifi-
cation of sensitive boundary parameters that significantly influence
overall performance.

When analyzing the temperature at each node of the turbine rotor, it
is essential to evaluate the influence of uncertain boundary parameters
on the first temperature objective function defined in Eq. (15).

T=3"""T() (15)

where N4, denotes the total number of nodes in the rotor’s temperature
field model, and T(i) represents the temperature at the i-th node. When
focusing on temperatures at specific critical locations on the turbine
rotor surface, a second temperature objective function is defined as
follows:

T=3""1() e

where M,,,q. denotes the number of critical points.

4.3. Sensitivity analysis of the thermal boundary

The uncertainty and sensitivity of thermal boundaries are analyzed.
Fig. 12 illustrates the probability distribution histogram of the first
temperature objective function, which exhibits an asymmetric distri-
bution centered around 116 °C, with a peak frequency of approximately
0.06, indicating a concentrated distribution.

The scatter plots in Fig. 13 reveal a strong correlation between
boundary Cg and the output temperature, indicating its significant in-
fluence on the objective function.

To quantitatively evaluate the sensitivity of uncertain thermal
boundaries, first-order and global sensitivity analyses are conducted, as
shown in Figs. 14 and 15. The first-order and global sensitivity indices of
boundary Cg dominate, accounting for 66.45 % and 62.71 %, respec-
tively, followed by C5 (11.3 % and 14.61 %) and C1¢ (12.13 % and 11.24
%). These results indicate that boundaries Cs, Co, and Cj¢ have a greater
impact on the output temperature than the other boundaries.

The uncertainty and sensitivity of thermal boundary conditions are
evaluated with respect to the temperature at critical locations on the
rotor surface. As shown in Fig. 16, the probability histogram of the
temperature distribution follows a symmetric normal distribution
centered at 216.2 °C with a peak probability of 0.074.

The scatter plots in the Fig. 17 indicate that boundary Cs exhibits a
weak correlation with the temperature objective function, while the
other boundaries show no discernible correlation.

To further quantify sensitivity, a variance-based sensitivity analysis
is conducted. As shown in Fig. 18, the first-order sensitivity indices of
boundaries Cs, Cs, C7, Co, C19, and Cy5 are 38.43 %, 10.63 %, 9.73 %,
11.31 %, 6.05 %, and 17.47 %, respectively, while the remaining
boundaries have negligible influence on the output. The global sensi-
tivity analysis, illustrated in Fig. 19, shows that the global sensitivity

116, 0.06

T

T T

=

(=3

[=}
T

=]

=3

£
T

Probability

g

<3

s}
T

40 60 80 100 120 140 160 180
Objective function 7' (°C)

Fig. 12. Probability distribution of the first temperature objective function.
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indices of these boundaries are 39.07 %, 9.08 %, 6.78 %, 17.77 %, 6.54
%, and 12.22 %, respectively. The close agreement between the first-
order and global sensitivity indices confirms that boundaries Cs, Cs,

ature objective functions indicates that the uncertain boundaries Cs, Cs,
C7, Co, C19, and Cy5 encompass all high-sensitivity parameter types.
Specifically, for the first temperature objective function, boundaries Cs,
Co, and Cj exhibit high sensitivity. For the second temperature objec-
tive function, boundaries Cs, Cs, C7, Co, C19, and C;5 are identified as
highly sensitive parameters.

Boundaries C3, Cs, C;, and Cg are directly exposed to high-
temperature combustion gases, serving as the primary heat-receiving
surfaces on the hot side of the rotor. These regions are subject to steep
thermal gradients and intense convective heat transfer, which accounts
for the significant influence of these sensitive boundaries on the tem-
perature field distribution. In addition, boundaries C1¢ and C;s serve as
relatively large cooling surfaces typically in contact with cool air. Their
extensive surface areas and effective heat dissipation capacities play a
crucial role in governing the overall thermal distribution.

5. High sensitivity thermal boundary prognostics of the
assembled turbine rotor

In this section, the advanced WSO algorithm is first introduced. Next,
an optimization objective function is defined based on experimental and
simulation data. Finally, the WSO algorithm is used to inversely predict
the high-sensitivity thermal boundaries of the T700 power turbine
assembled rotor.

5.1. WSO algorithm

The WSO algorithm is a meta-heuristic algorithm inspired by the
foraging behavior of great white sharks, particularly their exceptional
auditory and olfactory sensing capabilities [44]. These biological be-
haviors are mathematically modeled to balance global exploration and
local exploitation. By dynamically updating the positions of search
agents relative to the best solutions currently found, WSO effectively
avoids local minima and improves convergence toward the global op-
timum. The core principles of the algorithm are outlined as follows:

(1) When a white shark detects its prey through movement-induced
fluctuations, it moves toward the prey in an undulating motion. This
behavior can be described as follows:

V;<+1 = ﬂ[v;( +D1 (ngestk - W;() X €1+ P2 (W‘l;iest - Vl';() x CZ} (16)
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where i denotes the index of each white shark in a population of size. The
new velocity vector of the i-th white shark at (k + 1)-th step is denoted
by Vi, while v, wgpesik, and wi, represent its current velocity, the global
best position, and current position at k-th step, respectively. The indi-
vidual best position of the i-th white shark is denoted by w}.,, . Random
parameters ¢; and ¢, are drawn from the interval [0,1], while p; and p,
control the influence of the global and individual best positions on the
current position, respectively. u is the contraction factor.

(2) Additionally, the white shark performs a random search for prey,
described as follows:

Wi— @ W, +u-a+ b, rand < my

W;l(ﬂ = V}( a7

f

W, + %, rand > my

where wi_; denotes the new position vector of the i-th white shark at (k

10

+ 1)-th step, and - is the negation operator. Variables [ and u denote the
lower and upper bounds of the search space, respectively. The one-
dimensional binary vectors a and b are defined, and w, is a logical
vector. The parameter f represents the frequency of the white shark’s
movement, while rand denotes a random number uniformly distributed
in [0,1]. The variable mv characterizes the sensory capabilities of the
white shark, including its auditory and olfactory functions.

(3) Furthermore, white sharks move toward the individual closest to
the best prey currently found, described as follows:

w}-<+1 = Wepest, + M Dwsgn(r —0.5),13 < s; (18)

where w, 1 is the updated position of the i-th white shark relative to the
prey’s position. Random variables r1, r, and r3 are uniformly distributed
in [0,1]. Dy, denotes the distance between the prey and white shark, and
ss represents the strength of the white shark’s olfactory and visual senses
when tracking nearby conspecifics close to the optimal prey.

To justify the adoption of the WSO, benchmark comparisons are
performed against several widely used algorithms, including the spar-
row search algorithm (SSA), particle swarm optimization (PSO), simu-
lated annealing (SA), genetic algorithm (GA), whale optimization
algorithm (WOA), improved grasshopper optimization algorithm
(IGOA), artificial hummingbird algorithm (AHA), and artificial gorilla
troops optimizer (GTO). These algorithms are evaluated for the task of
estimating sensitive thermal boundary parameters in a complex
assembled rotor structure. All comparisons are conducted under iden-
tical conditions, including the same objective function, optimization
parameters, parameter bounds, and finite element model.

As shown in Fig. 20, the optimal objective values and computation
times of different algorithms are assessed with a population size of 50
and a maximum of 40 iterations. The results indicate that, compared
with the other algorithms, WSO exhibits strong overall performance in
terms of both optimization accuracy and computational efficiency.

5.2. High sensitivity thermal boundary prognostics results
The optimization objective function for turbine rotor surface tem-

perature, derived from both simulation and experimental data, is
defined as follows:

F=min|10 x 3" |Tun(i) — Tep(d) | (19

where Ty (i) and Teyp (i) denote the simulated and experimental tem-
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Fig. 20. Evaluation of optimization algorithms.

peratures at the i th measurement point, respectively. As the optimiza-
tion nears convergence, temperature differences may drop below 1074,
causing the objective function values to become too small for effective
convergence. To enhance numerical stability, a constant scaling factor of
10 is introduced into the objective function. Importantly, the scaling
factor does not affect the location of the optimal solution but improves
algorithmic stability. This practice is widely adopted in inverse opti-
mization problems to ensure stable and accurate convergence.

Parameter optimization is conducted using three measurement
points (n = 3), whose locations are shown in Fig. 21(a). These three
points were selected for optimization because the actual turbine rotor
structure is extremely compact, and the space available for installing
temperature sensors is very limited. Generally, sensors are more easily
installed near the turbine disk and drum, whereas placement near the
shaft is more challenging. To evaluate the accuracy of the proposed
sensitivity-driven thermal boundary prognostics method, the remaining
six measurement points, shown in Fig. 21(b), are used to validate its
applicability.

The WSO algorithm is employed to predict the high-sensitivity
boundaries of the T700 power turbine assembled turbine rotor, using
the optimized input parameters listed in Table 6. The range of 10-400
W/(m2K) is chosen based on physical constraints and empirical data,
covering typical variations in convective heat transfer coefficients from
standstill up to 12,000 rpm.

Fig. 22 shows the iterative results of the objective function obtained
from four independent runs of the WSO algorithm under two cases. In
both scenarios, the objective function exhibits a pronounced decrease as
the number of iterations increases, eventually stabilizing at a constant
value. This behavior indicates successful convergence of the algorithm.
The consistent convergence behavior across multiple runs demonstrates
the stability and repeatability of the WSO algorithm under these con-
ditions. In addition, the proposed method involves three main

Measuring point6 ———®

Measuring point 4 —_

Measuring point 3 \. =
=

(a) For optimization

Measuring point 1
\ =

Table 6

Optimization parameters.
Parameter type value
Population size 300
Maximum number of iterations 400

Number of high sensitivity parameters 6
Minimum thermal boundary parameter value (W/m?K) 10
Maximum thermal boundary parameter value (W/m?K) 400

computational steps: the temperature field simulation takes approxi-
mately 7.82 s per case, the global sensitivity analysis requires approxi-
mately 2.5 h, and the optimization process based on the WSO takes
approximately 4300 s per case.

Tables 7 and 8 show the predicted results of the six high-sensitivity
parameters under Case 1 and Case 2, respectively. Notably, the ther-
mal boundaries Cs, Cs, C7, and Cjo exhibit significant differences be-
tween the two operating conditions. These discrepancies arise from the
notable variations in the heating structure between the two cases. As
shown in Fig. 9, the difference in size of the cooling holes leads to
distinct heat flow distributions and localized temperature gradients
within the heating chamber, thereby altering local heat transfer effi-
ciency. For instance, at C7, which is located near the cooling holes, the
heat transfer coefficient in Case 2 is significantly lower than in Case 1.
This reduction is a result of enhanced airflow in the region, which
rapidly removes heat and diminishes the local temperature gradient. In
contrast, at locations less influenced by cooling (such as Cs), the heat
transfer coefficient may increase slightly. Consequently, the observed
variations in boundary condition parameters directly reflect the changes
in the local thermal-fluid behavior induced by structural modifications.

The above predicted values are subsequently applied as boundary
conditions in the temperature field model to obtain the temperature
distribution of the assembled rotor. To validate the proposed method

Measuring point 5

Measuring point 2

.\

=8
Measuring point 7

=

=
Measuring point § ————@

Measuring point 9 ~

(b) For verification

Fig. 21. Temperature measuring points.
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Fig. 22. Iteration results of objective function under two cases.

Table 7
Identification results under Case 1.

Parameter type Value (W/mZK) Parameter type Value (W/mzK)

Cs 338.5 Co 265.6

Cs 270.3 Cio 58.3

C; 260.9 Cis 116.3
Table 8

Identification results under Case 2.

Parameter type

Value (W/m?K)

Parameter type

Value (W/m?K)

Cs 308.1 Co 261.1
Cs 289.5 Cio 48.3
C, 136.5 Cis 119.3

and evaluate its accuracy, the relative errors between the experimental
and simulated temperatures at the measurement points shown in Fig. 21
(b) are calculated, as presented in Tables 9 and 10. In Case 1, the
maximum and average relative errors among all measurement points are
2.5 % and 0.9 %, respectively. For Case 2, these values are 2.4 % and 1.5
%, respectively. Notably, the relative error is less than 3 % at all points
for both cases, demonstrating high prediction accuracy.

To further demonstrate the advantages of the proposed method,
predictions are performed for all uncertain boundaries. For a fair com-
parison, the same WSO optimization algorithm, identical optimization
parameters (population size is 300 and maximum number of iterations is
400), and the experimental data from Case 1 are employed. Table 11
presents the experimental and simulated temperatures, together with
their relative errors, when all thermal boundaries are predicted. It is
evident that, under these consistent conditions, the prediction errors are
significantly larger compared with those obtained when only high-
sensitivity boundaries are predicted.

Table 9
Relative errors between experiment and simulation under Case 1.
Type Experiment Simulation Relative Average
results results errors relative error
C) C) (%) (%)
Measuring 92.3 90.0 2.5 0.9
point 1 (maximum)
Measuring 225.3 224.0 0.6
point 2
Measuring 251.0 252.9 0.8
point 5
Measuring 234.3 234.9 0.3
point 7
Measuring 250.7 252.9 0.9
point 8
Measuring 226.4 227.3 0.4
point 9

12

Table 10
Relative errors between experiment and simulation under Case 2.
Type Experiment Simulation Relative errors Average
results results (%) relative error
C) C) (%)
Measuring 77.1 78.4 1.7 1.5
point 1
Measuring 216.1 218.3 1.0
point 2
Measuring 239.9 236.7 1.3
point 5
Measuring 227.9 222.5 2.4(maximum)
point 7
Measuring 242.2 236.7 2.3
point 8
Measuring 227.0 227.8 0.4
point 9
Table 11

Relative errors between experiment and simulation under Case 1 (all uncertain
boundaries are predicted).

Type Experiment results Simulation results Relative error
(°C) (C) (%)
Measuring point 92.3 81.5 11.7
1
Measuring point ~ 225.3 197.5 12.3
2
Measuring point ~ 251.0 264.1 5.2
5
Measuring point ~ 234.3 244.6 4.4
7
Measuring point 250.7 264.1 5.3
8
Measuring point ~ 226.4 229.4 1.3
9

6. Conclusions and perspectives

In this work, a sensitivity-driven prognostic method for uncertain
thermal boundaries in complex turbine rotor structures is proposed. The
main conclusions are as follows:

(1) In modelling the turbine rotor temperature field, finite element
models of the substructures are assembled using TCR at the bolted in-
terfaces. A variance-based sensitivity analysis is conducted to evaluate
both the first-order and global sensitivities of all uncertain boundaries,
identifying Cs, Cs, C7, Cg, C19, and Cjs as highly sensitive.

(2) An inverse prognostics approach integrating the WSO algorithm
with sparse experimental data is proposed. Highly sensitivity boundary
parameters are predicted under two cases. After the objective function’s
iterative curves converge, the predicted values are substituted into the
temperature field model. The relative error between experimental and
simulated results remains below 3 % in both cases, validating the
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accuracy and effectiveness of the proposed method.

(3) This approach integrates the advantages of numerical modelling,
statistical sensitivity analysis, and iterative optimization to achieve an
efficient solution. A statistical sensitivity analysis identifies key pa-
rameters, enabling focused optimization while avoiding the computa-
tional burden of globally optimizing all uncertain boundaries. Crucially,
the method requires only sparse experimental data, significantly
reducing experimental costs and overcoming challenges associated with
constrained testing conditions.

(4) A simplified assembled rotor is designed using dimensional
analysis to provide preliminary validation of the proposed sensitivity-
driven thermal boundary prognostics method. Although the design re-
tains key geometric features and ensures that the dynamic response
captures the fundamental characteristics of the actual rotor, details such
as blades, blade roots, and seals are simplified in this structure. This
simplification leads to some discrepancies compared with the real rotor.
In the future, this method can be extended to a full-scale geometry to
improve its engineering applicability.

(5) The proposed thermal boundary prognostics method is validated
on a non-rotating turbine rotor structure. However, actual rotors operate
under high-speed rotating conditions, where additional factors such as
centrifugal effects and gyroscopic forces can influence heat transfer
characteristics. Therefore, future work will include validation under
realistic rotating conditions to comprehensively assess the method’s
applicability in practical engineering scenarios.

(6) The optimization objective function is based on the mean squared
error of temperature. Future work aims to incorporate local tempera-
tures at critical regions, such as bolt joints, blade roots, and couplings, to
enable multi-objective optimization and better meet broader engineer-
ing requirements. Additionally, to improve the accuracy and robustness
of boundary prediction, the number of temperature measurement points
will be increased, and weighting factors will be introduced into the
objective function.

Appendix A
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(7) Considering the spatial limitations of the actual rotor structure,
three temperature measurement points distributed on the rotor disk and
drum are used for optimization calculations. Although the final pre-
diction results in this work demonstrate high accuracy, a thorough
quantitative analysis of how the number and placement of temperature
measurement points used for optimization affect prediction accuracy
and computational speed was not conducted. Quantitative analysis of
these factors require further improvement in future work.
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The thermal conductivity matrix, heat capacity matrix, and temperature load vector are as follows:

¢ (bf + Cf) ¢ (bib; + cicj)

hs;
= (17 +7m)

¢ (bibm + CiCm)

B (A1)
.
% (m3)
(A2)
(A3)

, » hSi m .
KW' = | ¢ bbj+ae) ¢ (0 +¢)+5 (n+5) ¢ (bbn+cem) +
, . hSi 19 2 hSi
47 (bibm —+ CiCm) ¢ (b]bm + Cij) + ﬁ (T:, + rm) ¢ (bm + Cm) + 4
%pcp (Bri+r+7m) G%pcp (2ri+ 21+ 1) %pcp (2ri 17+ 2m)
£ A A A
N° = L (2ri+ 21 + 1) 3075 (ri+3r+71m) 507% (ri + 2r, + 2ry)
A A A
a0Po (2ri 71+ 2m) 60P (ri+2r, + 2ry) 307 (ri4717 4 3rm)
A
3% (2ri 47+ 7m)
A hs; T, m
P(h)" = | =q,(ri+ 25 + 1) + 25 (1 +73)
A hsT, Tm
Eqv(ri""rj"'zrm)"r 3f<r]+§)

where the unknown parameter where the coefficient ¢’ is expressed as ¢’ = k(r; + i+ 1m)/(124), A is equal to bicj + bjc;. The coefficients a;, b;, ¢;, a;,
b, ¢j, am, by, ¢ are undetermined, they are obtained based on the node coordinates:
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QG =TiZm—Tm% bi=2—2n c=Tn—1
QG =TnZi—TiZm bj=2n—2 c¢=r—Tm (A4)
An =TiZj— 12 bn=2—-2 cn=1—-T1;

where the position coordinates of the three nodes i, j and m of an element are defined as (r;, 2), (j, 2;), (", 2m) respectively.
Appendix B

The truncated area, maximum truncated area, critical truncated area, and minimum truncated area of the asperity are expressed as:

D2
Uimax = ADf ' (2 - Dy) g 2

"\ =2
a, = 2G5 7 1-Dy (B1)
a, =10718

where Drand Gy denote the fractal dimension and fractal roughness, respectively. H and E represent the equivalent hardness and elastic modulus of
the contact surface. ¢ is the domain expansion factor, satisfying the equation ¢ 2)/2 —(1 4 ¢ Y22)"" %% _2/p. 41 = 0,D; € (1,2).

1 zp b D2

(@) =500 2 Qe * 0 € [0, Gonar] (B2)
ad\*
A, = m‘,zn - ﬂ(i)
'Amax
A = 1 / an(a,)da; (B3)
2 Jo
A= /a uatn(at)dat
0

where a denotes the diameter coefficient of the bolt hole, d represents the nominal diameter of the bolt, and r,, is the distance from the center of the
bolt hole to the stress field boundary.

Appendix C

The independent sampling matrices A and B are denoted as follows:

ap; ot Mk b1,1 bl,k
A=| i =~ i [|B=| 1 =~ (C1H)
ank - ANk byk -+ bk

where a;; and b;; are general elements of the respective matrices.
The matrix Ap¥ associated with the i th factor C; obtained by radial resampling method is as follows:
aa s Ari bl,i ayiv1 ap k
AV = | : (C2)

avg - Gui1 by ani o awk
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