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A B S T R A C T

Accurate prognostics of thermal boundaries are essential for improving the precision of temperature calculations 
in complex turbine rotor structures. However, existing methods often rely on extensive experimental data or 
demand substantial computational resources to determine thermal boundaries. This makes it difficult to balance 
computational efficiency and accuracy, especially when dealing with complex rotor geometries or fluctuating 
operating conditions. To address these challenges, this study proposes a feasible and efficient approach that 
integrates numerical, statistical, and iterative techniques to predict uncertain thermal boundaries in complex 
turbine rotors. Specifically, a precise finite element model of the assembled turbine rotor’s temperature field is 
constructed using numerical methods. Subsequently, the temperature sensitivity of uncertain boundary param
eters is evaluated by statistical methods. The key boundary parameters with high sensitivity are identified via the 
white shark optimizer. Based on these key parameters, the temperature distribution of the turbine rotor is 
predicted. Experimental results validate the high accuracy (error < 3 %) of this sensitivity-driven approach, 
highlighting its viability in practical scenarios where experimental data are limited but both efficiency and ac
curacy are essential.

1. Introduction

Accurate predictions of temperature fields are essential to ensure the 
reliability of turbine rotor cooling strategies and the effectiveness of 
thermoelastic coupled vibration control. Such accuracy requires precise 
thermal boundary conditions [1,2]. However, in complex structures 
such as aero-engine and gas turbine rotors [3], thermal boundary con
ditions often exhibit significant uncertainties. If these parameters cannot 
be predicted accurately, temperature simulation results may diverge 
from actual operating conditions, even when high-precision models are 
employed. Thus, developing effective strategies to predict uncertain 
thermal boundary conditions is crucial for enhancing the accuracy of 
temperature field reconstruction.

Extensive efforts have been made to obtain uncertain thermal 
boundary conditions. These approaches include data-driven models, 
numerical simulations, analytical methods, statistical analyses, and 
iterative algorithms.

(1) Data-driven models use extensive experimental datasets to pre
dict thermal boundaries without requiring precise physical modelling. 
Common techniques in this category include data interpolation, deep 

learning, and machine learning [4–9]. Li et al. [10,11] proposed a deep 
learning regression-stratified strategy and distributed-coordinated neu
ral network metamodel to improve the computational efficiency and 
accuracy of turbine bladed disk life assessment. Although these methods 
eliminate the requirement for physical models, they are highly depen
dent on large datasets, which constrains their adaptability to different 
conditions.

(2) Numerical methods have been widely applied to capture thermal 
boundaries. Liao et al. [12] employed computational fluid dynamics to 
analyze heat transfer coefficients within a rotor–stator disk cavity. Hölz 
et al. [13] conducted computational fluid dynamics—conjugate heat 
transfer simulations to evaluate various thermal boundary conditions. 
Martins et al. [14] used the thermal lattice Boltzmann method to 
calculate Neumann boundary conditions. These numerical approaches 
are effective for solving complex problems. However, these methods 
require accurate modelling and uncertainties in parameters such as inlet 
flow, pressure, and fluid properties may persist throughout the simula
tion, potentially influencing the results.

(3) Analytical methods have been used to establish theoretical so
lutions for thermal boundaries. Heinze et al. [15] derived an analytical 
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lower bound for the heat transfer coefficient, while Battaglia et al. [16] 
proposed an analytical approach based on mathematical modelling and 
fractional-order integral theory to solve thermal boundary problems. Li 
et al. [17] introduced assumptions of temperature boundary conditions. 
Liu et al. [18] directly derived an analytical solution for the thermal 
boundary. However, the heat transfer coefficient remains an uncertain 
parameter, as it depends on environmental and operating conditions, 
making it challenging to define accurately using analytical methods.

(4) Statistical analyses have been employed to determine thermal 
boundaries using probabilistic methods. Yang, Gaaloul, and da Silva 
et al. [19–21] employed statistical methods to calculate uncertain 
thermal boundaries. While these methods help account for variability, 
they rely on statistical assumptions and are computationally complex.

(5) Iterative algorithms have gained increasing attention in recent 
years owing to their effectiveness in handling complex boundary con
ditions and structures. Wang et al. [22] proposed a thermal boundary 
prognostics method based on particle swarm optimization and finite 
element method. Song et al. [23] incorporated physical mechanisms into 
the multi-objective problem for the reliability assessment of turbine 
blades and proposed an extreme multi-domain transformation for 
dataset processing, significantly reducing computational complexity. 
Ren and Chen et al. [24,25] applied other intelligent optimization al
gorithms to determine thermal boundaries. Tourn, Chen, Cui, and Duda 
et al. [26–31] used gradient-based methods to predict thermal bound
aries. Frąckowiak et al. [32] introduced the Trefftz numerical function to 
solve the inverse heat conduction problem. Mierzwiczak and Wang et al. 
[33,34] used regularization methods to solve for thermal boundaries, 
while Bauzin et al. [35] employed deformation measurements for in
verse thermal boundary identification. However, this method is chal
lenged by the complex thermoelastic coupling transfer function between 
deformation and temperature, which demands high accuracy in both the 
temperature field and dynamics models.

In summary, substantial progress has been made in determining 
thermal boundaries. Techniques such as interpolation fitting, data- 
driven machine learning, numerical simulations, analytical methods, 
statistical methods, and iterative algorithms are widely employed. 
However, key technical gaps remain: most current thermal boundary 
estimation methods either require dense measurement data or assume 
idealized, uniformly distributed boundary conditions. These assump
tions are often impractical for assembled turbine rotors owing to their 
complex structures, uncertain thermal contact characteristics, and 
limited accessibility for sensor placement. Moreover, the influence of 
each thermal boundary on the overall temperature distribution is rarely 
quantified prior to inversion, leading to inefficient parameter estimation 
and possible convergence to physically unrealistic results. In this 
context, the core problem addressed in this work is: how to accurately 
and efficiently estimate uncertain thermal boundary conditions in 
assembled turbine rotors using only sparse experimental data.

This study proposes a sensitivity-driven method for predicting un
certain thermal boundaries in assembled turbine rotors. The method 
integrates the advantages of numerical, statistical, and iterative ap
proaches to predict thermal boundaries using sparse experimental data. 
This method is the primary innovation and contribution of the study. 
Specifically, the finite element method is used to construct a physical 
model of the temperature field for the turbine rotor substructures. 
Thermal contact resistance (TCR) is then applied to assembly sub
structures, obtaining an accurate temperature field model for the 
assembled turbine rotor. Based on this model, a quantitative sensitivity 
analysis of all uncertain thermal boundaries is conducted to identify 
highly sensitive thermal boundary parameters. The white shark opti
mizer (WSO) algorithm is subsequently employed to perform inverse 
prediction of these high-sensitivity parameters. Finally, the predicted 
thermal boundaries are validated by substituting them into the tem
perature field model and comparing the results with experimental 
results.

2. Assembled turbine rotor system and experimental setup

This section describes the assembled turbine rotor system and the 
experimental setup. First, the assembled turbine rotor structure used for 
thermal boundary prognostics is presented. Subsequently, the heating 
device and temperature data acquisition system are introduced. Finally, 
experimental data collected under different operating conditions are 
provided.

2.1. Assembled turbine rotor system

The geometric structure used in this study is a simplified design 
inspired by the characteristics of the GE T700 turbine rotor, rather than 
a full-scale replica of the actual rotor. The primary purpose of employing 
the simplified rotor structure is to validate the feasibility of the proposed 
thermal boundary prognostics method under experimentally control
lable conditions, rather than to conduct a comprehensive thermal 
simulation of a real turbine engine.

As shown in Fig. 1(a), the actual turbine rotor is assembled from 
three components with a complex structure [36]. To enable practical 
simulation and experimental investigations, a simplified assembled 
rotor is developed based on dimensional analysis [37]. This design re
tains key geometric features while ensuring that the dynamic response 
reflects the essential characteristics of the actual rotor. As shown in 
Fig. 1(b), the simplified model is also comprised of three substructures 
connected by two assembly contact interfaces. Fig. 2 shows the test rig 
constructed with the simplified assembled rotor.

The modal assurance criterion (MAC) is calculated to quantify the 
similarity between mode shapes [38]: 

MAC =

(
ϕFE

iϕX
j)2

(
ϕFE

iϕFE
j)( ϕX

iϕX
j) (1) 

where ϕFE
i denotes the i-th mode shape of the full-scale model, and ϕX

j 

represents the j-th mode shape of the scaled rotor model. MAC values 
range from 0 to 1, with values close to 1 indicating strong similarity 
between mode shapes. As shown in Table 1, the first three modes all 
exceed 0.91, and their corresponding critical speeds are proportionally 
reduced.

The edges of the turbine disk are in direct contact with high- 
temperature gas, while the sides of the disk are exposed to cooling 
gas, resulting in a specific temperature gradient. As shown in Fig. 3, this 
turbine rotor includes 19 uncertain thermal boundaries.

2.2. Heating device

A circumferentially wrapped heating structure is designed (Fig. 4), 
incorporating a quartz lamp as the heating actuator. Combined with the 
temperature control and data acquisition system (Fig. 5), this setup 
enables precise temperature regulation.

As shown in Fig. 5, the temperature control process begins by 
acquiring voltage signals from the temperature sensors, which are sent 
to the transmitter. The transmitter processes these signals and forwards 
them to the dSPACE controller. Finally, the controller outputs control 
signals to the actuator, ensuring a circumferentially uniform tempera
ture field for the experiment.

2.3. Experimental data collection results

Fig. 6 shows the schematic and experimental setup for the temper
ature sensor layout. Temperature measurements are taken at nine lo
cations on the turbine rotor surface to support thermal boundary 
prognostics and validation. The sensor locations include the shaft, small 
drum, small disk, large drum, large disk, and internal cavity.

The proposed method in this study is applicable to both stationary 
and rotating structures. However, preliminary validation is carried out 
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using a stationary rotor owing to current limitations in temperature 
measurement under rotating conditions. Consequently, two steady-state 
non-rotating cases are selected for subsequent analysis. Figs. 7 and 8
show the temperatures recorded at the nine measurement points under 
these two conditions.

To minimize the impact of temperature fluctuations on prediction 
and validation, 5,000 temperature samples collected over 50 s are 
averaged. The mean temperatures at these locations under the two 
conditions are shown in Tables 2 and 3. These data are used for thermal 
boundary prognostics and validation in Section 5.

The main difference between the two cases is that Case 2 features a 
larger cooling hole at the left end of the heating structure compared with 

Case 1. Fig. 9(a) and 9(b) show the left end of the heating structure 
under Cases 1 and 2, respectively.

3. The temperature field model of the assembled turbine rotor

This section first presents the temperature field model of each sub
structure, followed by an introduction to the TCR at the bolted in
terfaces. The substructure models are then assembled using the TCR to 
construct the temperature field model of the assembled turbine rotor.

3.1. The temperature field of the substructure

The transient heat transfer in the axisymmetric structure is governed 
by the following partial differential equation: 

∂T
∂t

=
k

cpρ

(
∂2T
∂r2 +

1
r

∂T
∂r

+
∂2T
∂z2 +

qv

k

)

(2) 

where T represents the temperature field, t denotes time, z and r are the 
axial and radial coordinates of the axisymmetric structure respectively, 
qv represents the internal heat source, k denotes the thermal conduc
tivity, cp represents the constant pressure specific heat, and ρ is the 
density.

Based on the finite element method, the axisymmetric heat transfer 
equation of an element is formulated as: 

K(h)ETE + NE∂T
∂t

E

= PE(h) (3) 

where TE and {∂T/∂t}E represent the temperature vector and the first- 
order derivative vector of temperature for an element, respectively. 
K(h)E, NE, and P(h)E denote the thermal conductivity matrix, heat ca
pacity matrix, and temperature load vector of an element, respectively. 
For the convective heat transfer boundary conditions, both the thermal 
conductivity matrix KE and the temperature load vector PE (shown in 
Appendix A) are influenced by the heat transfer coefficient h and 
ambient temperature Tf . Heat transfer in turbine rotors primarily occurs 
through convection. However, because this study uses radiation heating 
in the experiment, the radiation boundary condition is linearized to 
approximate convective heat transfer. The linearized thermal radiation 
boundary condition includes an equivalent heat transfer coefficient h, 

Fig. 1. Assembled turbine rotor system before and after simplification.

Fig. 2. The test rig of simplified assembled rotor.

Table 1 
Comparison of dynamic characteristics between full-scale and scaled models.

Mode MAC Critical Speed (rpm) Speed 
RatioRotor before 

simplification
Simplified 
rotor

First order 0.937 7894 3848 1:0.487
Second 

order
0.929 14,971 7483 1:0.499

Third order 0.910 38,683 19,689 1:0.509
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treated as a constant under steady-state temperature conditions, and an 
effective radiation temperature Tf . The finite element model of the 
temperature field for the three substructures can be expressed as follows: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

KSTS + NS
∂TS

∂t
= PS

KD1 TD1 + ND1

∂TD1

∂t
= PD1

KD2 TD2 + ND2

∂TD2

∂t
= PD2

(4) 

where the subscripts S, D1, and D2 denote the shaft, disk 1 and disk 2, 
respectively.

3.2. Thermal contact resistance connected by bolts

As shown in Fig. 10, when heat transfers across a contact interface, a 
temperature gradient develops owing to the presence of TCR. For a 
bolted connection, the TCR is defined as [39]: 

Rbolti =

∫ atc

as

̅̅̅
π

√
ξ1 + ξ2

2k2
̅̅̅̅̅̅
Aa

√
atn(at)

dat +

∫ atmax

atc

̅̅̅̅̅̅
2π

√
ξ1 + 2ξ2

2k2
̅̅̅̅̅̅
Aa

√
atn(at)

dat (5) 

Fig. 3. Uncertain thermal boundaries of the turbine rotor.

Fig. 4. Heating device.

Fig. 5. Temperature control and data acquisition system.
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where n is the asperity distribution density, k is the thermal conductivity 
coefficients of the structures, and Aa is the nominal contact area. at, 
atmax, atc, and as denote the truncated area, maximum truncated area, 
critical truncated area, and minimum truncated area of the asperity, 
respectively. Their specific definitions are provided in Appendix B. The 
coefficients ξ1 and ξ2 are defined as: 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ξ1 = 2
̅̅̅̅̅̅̅̅̅̅
atAa

√
k

(

1 −

̅̅̅̅̅̅

Ar

Aa

√ )1.5

ξ2 = 2
̅̅̅̅̅̅̅̅
2Ar

√
kσ
[

erfc− 1
(2Ps) + erfc− 1

(
2At

Aa

)]
(6) 

where σ represents the root mean square height, while Ar and At denote 
the total actual contact area and the total truncated contact area of a 
single bolt. The specific expressions are provided in Appendix B.

3.3. The temperature field of the assembled turbine rotor

Thermal contact conductance (TCC) represents the heat flux con
ducted per unit area and per unit temperature difference across the 
contact interface, and it is the reciprocal of TCR. The temperature field 
model of the assembled rotor is constructed by assembling the temper
ature field models of the three substructures using TCC. 

K⋅T + N⋅
∂T
∂t

= P (7) 

where K, N, and P are the thermal conductivity matrix, heat capacity 
matrix, and temperature load vector of the assembled rotor, respec
tively. The temperature model of the assembled rotor is discretized using 
triangular finite elements, comprising 1,404 nodes and 2,128 elements.

For the steady-state heat conduction problem, a direct solver based 
on Cholesky decomposition is employed to solve the linear system. The 
governing equation is expressed as: 

Fig. 6. Temperature sensor layout.

Fig. 7. Experiment data under Case 1.
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T =
P
K

(8) 

For the transient heat conduction problem, Galerkin time dis
cretization based on the weighted residual method is employed. The 
corresponding computational equation is given by: 
(

2K +
3N
Δt

)

Tt = 2Pt + Pt− Δt +

(
3N
Δt

− K
)

Tt− Δt (9) 

where Δt is the time step, which is set to 0.01 s.

3.4. The parameters of the temperature model

The assembled rotor includes two bolted contact interfaces, as shown 
in Fig. 11. Table 4 lists the structural and material parameters used to 
calculate the temperature distribution. Aside from the fractal dimension 
and fractal roughness derived from experimental data [40–42], all other 
parameters are obtained from material properties, rotor geometry, or 

Fig. 8. Experiment data under Case 2.

Table 2 
Experiment temperature values under Case 1.

Type Temperature 
(℃)

Type Temperature 
(℃)

Type Temperature 
(℃)

Measuring point 1 92.3 Measuring point 4 250.0 Measuring point 7 234.3
Measuring point 2 225.3 Measuring point 5 251.0 Measuring point 8 250.7
Measuring point 3 248.0 Measuring point 6 227.4 Measuring point 9 226.4

Table 3 
Experiment temperature values under Case 2.

Type Temperature 
(℃)

Type Temperature 
(℃)

Type Temperature 
(℃)

Measuring point 1 77.1 Measuring point 4 247.4 Measuring point 7 227.9
Measuring point 2 216.1 Measuring point 5 239.9 Measuring point 8 242.2
Measuring point 3 241.4 Measuring point 6 227.3 Measuring point 9 227.0

Fig. 9. Left end of the heating structure under two cases.
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empirical formulas.
Additionally, based on the radiation efficiency and characteristics of 

the quartz heating lamps used in experiments, the effective radiation 
temperature is first estimated. The corresponding results are shown in 
the Table 5.

4. Thermal boundary sensitivity analysis of the assembled 
turbine rotor

This section first introduces the variance-based methods used for 
uncertainty and sensitivity analysis. Next, the temperature objective 
functions are defined. Finally, the sensitivity of thermal boundaries to 
the objectives is analyzed in detail to identify boundaries with high 
sensitivity.

Fig. 10. The thermal resistance equivalent method.

Fig. 11. Contact interfaces.

Table 4 
Structural and material parameters of two contact interfaces.

Parameters Value Parameters Value

Fractal dimension of 
interfaces Df

1.6182 RMS height σ 1.56 ×
10− 6

Fractal roughness of 
interfaces Gf

4.1252 ×
10− 7

Small probability value Ps 0.05

Equivalent hardness H̃ 2.04 GPa Nominal contact area of 
interface ①Aa

4.4 ×
10− 3 m2

Equivalent elastic 
modulus Ẽ

108 GPa Nominal contact area of 
interface ②Aa

0.011 m2

Bolts number of 
interfaces Nbolt

8 Thermal conductivity k 50 W/m⋅K

Bolt hole inner 
diameter d

0.006 m Bolt hole diameter 
coefficient α

1.125

Table 5 
Effective radiation temperature.

Parameter Effective radiation temperature 
(℃)

C1, C19 27
C2, C4, C6, C8, C10, C11, C12, C13, C14, C15, C16, C17, 

C18, C19

100

C3, C5, C7, C9 320
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4.1. Sensitivity analysis method

For a temperature objective function Tob = f(C1,C2, ...,C19), where 
C1,C2, ...,C19 represent multiple uncertain boundaries, variance-based 
sensitivity analysis is applied. This method entails a comprehensive 
decomposition of the uncertainty associated with Tob. The variance 
V(Tob) of the objective function can be expressed as: 

V(Tob) =
∑nC

i=1
Vi +

∑nC

i=1

∑nC

j=i+1
Vij + ⋯ + V12⋯nC (10) 

where Vi represents the contribution of input Ci to total variance V(Tob), 
while Vij denotes the contribution of the interaction between Ci and Cj. 
The term V12,⋯,nC accounts for the contribution from higher-order in
teractions among all input variables C1, C2, ..., Cnc. To quantify the in
fluence of Ci on the output variance, the first-order sensitivity index is 
defined as: 

Si =
Vi

V(Tob)
=

VCi

(
EC∼i (Tob|Ci)

)

V(Tob)
(11) 

To quantify both the first-order and higher-order effects of Ci on the 
variance V(Tob), the variance-based global sensitivity index is defined as: 

STi =
Vi +

∑nC
j=1,j∕=i Vij + ⋯ + V12⋯nC

V(Tob)
=

EC∼i

(
VCi (T|C∼i)

)

V(T)
(12) 

where Ci represents the sample matrix of the factor Ci, while C∼i denotes 
the sample matrix for all factors except Ci. The variance VCi (EC∼i (Tob|Ci))

and the mean EC∼i (VCi (Tob|C∼i)) are computed from the sample matrices 
and the temperature field model. These values are then substituted into 
Eqs. (10) and (11) to determine the sensitivity indices. To calculate the 
variance and mean efficiently, the improved method proposed by Salt
elli et al. [43] is employed: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

VC∼i

(
ECi (Tob|C∼i)

)
=

1
N
∑N

j=1
f(B)j

(

f
(

A(i)
B

)

j
− f(A)j

)

EC∼i

(
VCi (Tob|C∼i)

)
=

1
2N
∑N

j=1

(
f(A)j − f

(
A(i)

B
)

j

)2
(13) 

Therefore, the first-order sensitivity and the global sensitivity indices 
are expressed as follows: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Si =

∑N
j=1f(B)j

(

f
(

A(i)
B

)

j
− f(A)j

)

NV(T)

STi =

∑N
j=1

(

f(A)j − f
(

A(i)
B

)

j

)2

2NV(T)

(14) 

where A and B are two independent sampling matrices, i represents the 
i-th factor (i ∈ [1, nC]), and j denotes the number of simulation (j ∈ [1,
nS]). To calculate the variance and mean, the matrix AB

(i) is introduced, 
with its detailed definition provided in Appendix C.

Variance-based sensitivity analysis employs 5,000 input samples 
generated through latin hypercube sampling to ensure a comprehensive 
and uniform exploration of the parameter space. Convergence is 
considered achieved when incremental increases in sample size result in 
fluctuations of first-order and global sensitivity indices less than 1 %, 
serving as a criterion for result stability and reliability.

4.2. Sensitivity objective function

To avoid introducing subjectivity or unnecessary bias from artifi
cially assigned weighting factors, a simple summation method is used to 

define the objective function for sensitivity analysis. This approach en
sures consistent treatment of temperatures across different regions, 
facilitating an objective evaluation of the model’s temperature response 
throughout the entire boundary. It also enables more effective identifi
cation of sensitive boundary parameters that significantly influence 
overall performance.

When analyzing the temperature at each node of the turbine rotor, it 
is essential to evaluate the influence of uncertain boundary parameters 
on the first temperature objective function defined in Eq. (15). 

T =
∑Nnode

i=1
T(i) (15) 

where Nnode denotes the total number of nodes in the rotor’s temperature 
field model, and T(i) represents the temperature at the i-th node. When 
focusing on temperatures at specific critical locations on the turbine 
rotor surface, a second temperature objective function is defined as 
follows: 

T =
∑Mnode

i=1
T(i) (16) 

where Mnode denotes the number of critical points.

4.3. Sensitivity analysis of the thermal boundary

The uncertainty and sensitivity of thermal boundaries are analyzed. 
Fig. 12 illustrates the probability distribution histogram of the first 
temperature objective function, which exhibits an asymmetric distri
bution centered around 116 ◦C, with a peak frequency of approximately 
0.06, indicating a concentrated distribution.

The scatter plots in Fig. 13 reveal a strong correlation between 
boundary C9 and the output temperature, indicating its significant in
fluence on the objective function.

To quantitatively evaluate the sensitivity of uncertain thermal 
boundaries, first-order and global sensitivity analyses are conducted, as 
shown in Figs. 14 and 15. The first-order and global sensitivity indices of 
boundary C9 dominate, accounting for 66.45 % and 62.71 %, respec
tively, followed by C5 (11.3 % and 14.61 %) and C10 (12.13 % and 11.24 
%). These results indicate that boundaries C5, C9, and C10 have a greater 
impact on the output temperature than the other boundaries.

The uncertainty and sensitivity of thermal boundary conditions are 
evaluated with respect to the temperature at critical locations on the 
rotor surface. As shown in Fig. 16, the probability histogram of the 
temperature distribution follows a symmetric normal distribution 
centered at 216.2 ◦C with a peak probability of 0.074.

The scatter plots in the Fig. 17 indicate that boundary C3 exhibits a 
weak correlation with the temperature objective function, while the 
other boundaries show no discernible correlation.

To further quantify sensitivity, a variance-based sensitivity analysis 
is conducted. As shown in Fig. 18, the first-order sensitivity indices of 
boundaries C3, C5, C7, C9, C10, and C15 are 38.43 %, 10.63 %, 9.73 %, 
11.31 %, 6.05 %, and 17.47 %, respectively, while the remaining 
boundaries have negligible influence on the output. The global sensi
tivity analysis, illustrated in Fig. 19, shows that the global sensitivity 

Fig. 12. Probability distribution of the first temperature objective function.
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indices of these boundaries are 39.07 %, 9.08 %, 6.78 %, 17.77 %, 6.54 
%, and 12.22 %, respectively. The close agreement between the first- 
order and global sensitivity indices confirms that boundaries C3, C5, 

C7, C9, C10, and C15 exert the greatest influence on the output 
temperature.

The sensitivity analysis of the thermal boundaries for both temper
ature objective functions indicates that the uncertain boundaries C3, C5, 
C7, C9, C10, and C15 encompass all high-sensitivity parameter types. 
Specifically, for the first temperature objective function, boundaries C5, 
C9, and C10 exhibit high sensitivity. For the second temperature objec
tive function, boundaries C3, C5, C7, C9, C10, and C15 are identified as 
highly sensitive parameters.

Boundaries C3, C5, C7, and C9 are directly exposed to high- 
temperature combustion gases, serving as the primary heat-receiving 
surfaces on the hot side of the rotor. These regions are subject to steep 
thermal gradients and intense convective heat transfer, which accounts 
for the significant influence of these sensitive boundaries on the tem
perature field distribution. In addition, boundaries C10 and C15 serve as 
relatively large cooling surfaces typically in contact with cool air. Their 
extensive surface areas and effective heat dissipation capacities play a 
crucial role in governing the overall thermal distribution.

5. High sensitivity thermal boundary prognostics of the 
assembled turbine rotor

In this section, the advanced WSO algorithm is first introduced. Next, 
an optimization objective function is defined based on experimental and 
simulation data. Finally, the WSO algorithm is used to inversely predict 
the high-sensitivity thermal boundaries of the T700 power turbine 
assembled rotor.

5.1. WSO algorithm

The WSO algorithm is a meta-heuristic algorithm inspired by the 
foraging behavior of great white sharks, particularly their exceptional 
auditory and olfactory sensing capabilities [44]. These biological be
haviors are mathematically modeled to balance global exploration and 
local exploitation. By dynamically updating the positions of search 
agents relative to the best solutions currently found, WSO effectively 
avoids local minima and improves convergence toward the global op
timum. The core principles of the algorithm are outlined as follows:

(1) When a white shark detects its prey through movement-induced 
fluctuations, it moves toward the prey in an undulating motion. This 
behavior can be described as follows: 

vi
k+1 = μ

[
vi

k + p1
(
wgbestk − wi

k
)
× c1 + p2

(
wvi

best − wi
k
)
× c2

]
(16) 

Fig. 13. Scatter plot of the first temperature objective function.

Fig. 14. First-order sensitivity of uncertain thermal boundaries.

Fig. 15. Global sensitivity of uncertain thermal boundaries.

Fig. 16. Probability distribution of the second temperature objective function.
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where i denotes the index of each white shark in a population of size. The 
new velocity vector of the i-th white shark at (k + 1)-th step is denoted 
by vi

k+1, while vi
k, wgbestk, and wi

k represent its current velocity, the global 
best position, and current position at k-th step, respectively. The indi
vidual best position of the i-th white shark is denoted by wvi

best . Random 
parameters c1 and c2 are drawn from the interval [0,1], while p1 and p2 
control the influence of the global and individual best positions on the 
current position, respectively. μ is the contraction factor.

(2) Additionally, the white shark performs a random search for prey, 
described as follows: 

wi
k+1 =

⎧
⎪⎪⎨

⎪⎪⎩

wi
k⋅¬ ⊕ wo + u⋅a + l⋅b, rand < mv

wi
k +

vi
k
f
, rand ≥ mv

(17) 

where wi
k+1 denotes the new position vector of the i-th white shark at (k 

+ 1)-th step, and ¬ is the negation operator. Variables l and u denote the 
lower and upper bounds of the search space, respectively. The one- 
dimensional binary vectors a and b are defined, and wo is a logical 
vector. The parameter f represents the frequency of the white shark’s 
movement, while rand denotes a random number uniformly distributed 
in [0,1]. The variable mv characterizes the sensory capabilities of the 
white shark, including its auditory and olfactory functions.

(3) Furthermore, white sharks move toward the individual closest to 
the best prey currently found, described as follows: 

w
́ i
k+1 = wgbestk + r1Dwsgn(r2 − 0.5), r3 < ss (18) 

where w
́ i
k+1 is the updated position of the i-th white shark relative to the 

prey’s position. Random variables r1, r2 and r3 are uniformly distributed 
in [0,1]. Dw denotes the distance between the prey and white shark, and 
ss represents the strength of the white shark’s olfactory and visual senses 
when tracking nearby conspecifics close to the optimal prey.

To justify the adoption of the WSO, benchmark comparisons are 
performed against several widely used algorithms, including the spar
row search algorithm (SSA), particle swarm optimization (PSO), simu
lated annealing (SA), genetic algorithm (GA), whale optimization 
algorithm (WOA), improved grasshopper optimization algorithm 
(IGOA), artificial hummingbird algorithm (AHA), and artificial gorilla 
troops optimizer (GTO). These algorithms are evaluated for the task of 
estimating sensitive thermal boundary parameters in a complex 
assembled rotor structure. All comparisons are conducted under iden
tical conditions, including the same objective function, optimization 
parameters, parameter bounds, and finite element model.

As shown in Fig. 20, the optimal objective values and computation 
times of different algorithms are assessed with a population size of 50 
and a maximum of 40 iterations. The results indicate that, compared 
with the other algorithms, WSO exhibits strong overall performance in 
terms of both optimization accuracy and computational efficiency.

5.2. High sensitivity thermal boundary prognostics results

The optimization objective function for turbine rotor surface tem
perature, derived from both simulation and experimental data, is 
defined as follows: 

f = min

[

10 ×
∑n

i=1

⃒
⃒Tsim(i) − Texp(i)

⃒
⃒

]

(19) 

where Tsim(i) and Texp(i) denote the simulated and experimental tem

Fig. 17. Scatter plot of the second temperature objective function.

Fig. 18. First-order sensitivity of uncertain thermal boundaries.

Fig. 19. Global sensitivity of uncertain thermal boundaries.
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peratures at the i th measurement point, respectively. As the optimiza
tion nears convergence, temperature differences may drop below 10− 4, 
causing the objective function values to become too small for effective 
convergence. To enhance numerical stability, a constant scaling factor of 
10 is introduced into the objective function. Importantly, the scaling 
factor does not affect the location of the optimal solution but improves 
algorithmic stability. This practice is widely adopted in inverse opti
mization problems to ensure stable and accurate convergence.

Parameter optimization is conducted using three measurement 
points (n = 3), whose locations are shown in Fig. 21(a). These three 
points were selected for optimization because the actual turbine rotor 
structure is extremely compact, and the space available for installing 
temperature sensors is very limited. Generally, sensors are more easily 
installed near the turbine disk and drum, whereas placement near the 
shaft is more challenging. To evaluate the accuracy of the proposed 
sensitivity-driven thermal boundary prognostics method, the remaining 
six measurement points, shown in Fig. 21(b), are used to validate its 
applicability.

The WSO algorithm is employed to predict the high-sensitivity 
boundaries of the T700 power turbine assembled turbine rotor, using 
the optimized input parameters listed in Table 6. The range of 10–400 
W/(m2⋅K) is chosen based on physical constraints and empirical data, 
covering typical variations in convective heat transfer coefficients from 
standstill up to 12,000 rpm.

Fig. 22 shows the iterative results of the objective function obtained 
from four independent runs of the WSO algorithm under two cases. In 
both scenarios, the objective function exhibits a pronounced decrease as 
the number of iterations increases, eventually stabilizing at a constant 
value. This behavior indicates successful convergence of the algorithm. 
The consistent convergence behavior across multiple runs demonstrates 
the stability and repeatability of the WSO algorithm under these con
ditions. In addition, the proposed method involves three main 

computational steps: the temperature field simulation takes approxi
mately 7.82 s per case, the global sensitivity analysis requires approxi
mately 2.5 h, and the optimization process based on the WSO takes 
approximately 4300 s per case.

Tables 7 and 8 show the predicted results of the six high-sensitivity 
parameters under Case 1 and Case 2, respectively. Notably, the ther
mal boundaries C3, C5, C7, and C10 exhibit significant differences be
tween the two operating conditions. These discrepancies arise from the 
notable variations in the heating structure between the two cases. As 
shown in Fig. 9, the difference in size of the cooling holes leads to 
distinct heat flow distributions and localized temperature gradients 
within the heating chamber, thereby altering local heat transfer effi
ciency. For instance, at C7, which is located near the cooling holes, the 
heat transfer coefficient in Case 2 is significantly lower than in Case 1. 
This reduction is a result of enhanced airflow in the region, which 
rapidly removes heat and diminishes the local temperature gradient. In 
contrast, at locations less influenced by cooling (such as C5), the heat 
transfer coefficient may increase slightly. Consequently, the observed 
variations in boundary condition parameters directly reflect the changes 
in the local thermal-fluid behavior induced by structural modifications.

The above predicted values are subsequently applied as boundary 
conditions in the temperature field model to obtain the temperature 
distribution of the assembled rotor. To validate the proposed method 

Fig. 20. Evaluation of optimization algorithms.

Fig. 21. Temperature measuring points.

Table 6 
Optimization parameters.

Parameter type value

Population size 300
Maximum number of iterations 400
Number of high sensitivity parameters 6
Minimum thermal boundary parameter value (W/m2K) 10
Maximum thermal boundary parameter value (W/m2K) 400
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and evaluate its accuracy, the relative errors between the experimental 
and simulated temperatures at the measurement points shown in Fig. 21
(b) are calculated, as presented in Tables 9 and 10. In Case 1, the 
maximum and average relative errors among all measurement points are 
2.5 % and 0.9 %, respectively. For Case 2, these values are 2.4 % and 1.5 
%, respectively. Notably, the relative error is less than 3 % at all points 
for both cases, demonstrating high prediction accuracy.

To further demonstrate the advantages of the proposed method, 
predictions are performed for all uncertain boundaries. For a fair com
parison, the same WSO optimization algorithm, identical optimization 
parameters (population size is 300 and maximum number of iterations is 
400), and the experimental data from Case 1 are employed. Table 11
presents the experimental and simulated temperatures, together with 
their relative errors, when all thermal boundaries are predicted. It is 
evident that, under these consistent conditions, the prediction errors are 
significantly larger compared with those obtained when only high- 
sensitivity boundaries are predicted.

6. Conclusions and perspectives

In this work, a sensitivity-driven prognostic method for uncertain 
thermal boundaries in complex turbine rotor structures is proposed. The 
main conclusions are as follows:

(1) In modelling the turbine rotor temperature field, finite element 
models of the substructures are assembled using TCR at the bolted in
terfaces. A variance-based sensitivity analysis is conducted to evaluate 
both the first-order and global sensitivities of all uncertain boundaries, 
identifying C3, C5, C7, C9, C10, and C15 as highly sensitive.

(2) An inverse prognostics approach integrating the WSO algorithm 
with sparse experimental data is proposed. Highly sensitivity boundary 
parameters are predicted under two cases. After the objective function’s 
iterative curves converge, the predicted values are substituted into the 
temperature field model. The relative error between experimental and 
simulated results remains below 3 % in both cases, validating the 

Fig. 22. Iteration results of objective function under two cases.

Table 7 
Identification results under Case 1.

Parameter type Value (W/m2K) Parameter type Value (W/m2K)

C3 338.5 C9 265.6
C5 270.3 C10 58.3
C7 260.9 C15 116.3

Table 8 
Identification results under Case 2.

Parameter type Value (W/m2K) Parameter type Value (W/m2K)

C3 308.1 C9 261.1
C5 289.5 C10 48.3
C7 136.5 C15 119.3

Table 9 
Relative errors between experiment and simulation under Case 1.

Type Experiment 
results 
(℃)

Simulation 
results 
(℃)

Relative 
errors 
(%)

Average 
relative error 
(%)

Measuring 
point 1

92.3 90.0 2.5 
(maximum)

0.9

Measuring 
point 2

225.3 224.0 0.6

Measuring 
point 5

251.0 252.9 0.8

Measuring 
point 7

234.3 234.9 0.3

Measuring 
point 8

250.7 252.9 0.9

Measuring 
point 9

226.4 227.3 0.4

Table 10 
Relative errors between experiment and simulation under Case 2.

Type Experiment 
results 
(℃)

Simulation 
results 
(℃)

Relative errors 
(%)

Average 
relative error 
(%)

Measuring 
point 1

77.1 78.4 1.7 1.5

Measuring 
point 2

216.1 218.3 1.0

Measuring 
point 5

239.9 236.7 1.3

Measuring 
point 7

227.9 222.5 2.4(maximum)

Measuring 
point 8

242.2 236.7 2.3

Measuring 
point 9

227.0 227.8 0.4

Table 11 
Relative errors between experiment and simulation under Case 1 (all uncertain 
boundaries are predicted).

Type Experiment results 
(℃)

Simulation results 
(℃)

Relative error 
(%)

Measuring point 
1

92.3 81.5 11.7

Measuring point 
2

225.3 197.5 12.3

Measuring point 
5

251.0 264.1 5.2

Measuring point 
7

234.3 244.6 4.4

Measuring point 
8

250.7 264.1 5.3

Measuring point 
9

226.4 229.4 1.3
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accuracy and effectiveness of the proposed method.
(3) This approach integrates the advantages of numerical modelling, 

statistical sensitivity analysis, and iterative optimization to achieve an 
efficient solution. A statistical sensitivity analysis identifies key pa
rameters, enabling focused optimization while avoiding the computa
tional burden of globally optimizing all uncertain boundaries. Crucially, 
the method requires only sparse experimental data, significantly 
reducing experimental costs and overcoming challenges associated with 
constrained testing conditions.

(4) A simplified assembled rotor is designed using dimensional 
analysis to provide preliminary validation of the proposed sensitivity- 
driven thermal boundary prognostics method. Although the design re
tains key geometric features and ensures that the dynamic response 
captures the fundamental characteristics of the actual rotor, details such 
as blades, blade roots, and seals are simplified in this structure. This 
simplification leads to some discrepancies compared with the real rotor. 
In the future, this method can be extended to a full-scale geometry to 
improve its engineering applicability.

(5) The proposed thermal boundary prognostics method is validated 
on a non-rotating turbine rotor structure. However, actual rotors operate 
under high-speed rotating conditions, where additional factors such as 
centrifugal effects and gyroscopic forces can influence heat transfer 
characteristics. Therefore, future work will include validation under 
realistic rotating conditions to comprehensively assess the method’s 
applicability in practical engineering scenarios.

(6) The optimization objective function is based on the mean squared 
error of temperature. Future work aims to incorporate local tempera
tures at critical regions, such as bolt joints, blade roots, and couplings, to 
enable multi-objective optimization and better meet broader engineer
ing requirements. Additionally, to improve the accuracy and robustness 
of boundary prediction, the number of temperature measurement points 
will be increased, and weighting factors will be introduced into the 
objective function.

(7) Considering the spatial limitations of the actual rotor structure, 
three temperature measurement points distributed on the rotor disk and 
drum are used for optimization calculations. Although the final pre
diction results in this work demonstrate high accuracy, a thorough 
quantitative analysis of how the number and placement of temperature 
measurement points used for optimization affect prediction accuracy 
and computational speed was not conducted. Quantitative analysis of 
these factors require further improvement in future work.
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Appendix A 

The thermal conductivity matrix, heat capacity matrix, and temperature load vector are as follows: 

K(h)E
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ϕ’
(

b2
j + c2

j

)
ϕ’( bibj + cicj

)
ϕ’(bibm + cicm)

ϕ’( bibj + cicj
)

ϕ’
(

b2
j + c2

j

)
+

hsi

4

(
rj +

rm

3

)
ϕ’( bjbm + cjcm

)
+

hsi

12
(
rj + rm

)

ϕ’(bibm + cicm) ϕ’( bjbm + cjcm
)
+

hsi

12
(
rj + rm

)
ϕ’( b2

m + c2
m

)
+

hsi

4

(
rm +

rj

3

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(A1) 

NE =

⎡
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⎢
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Δ
30

ρcp
(
3ri + rj + rm

) Δ
60
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(
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) Δ
60

ρcp
(
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)

Δ
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ρcp
(
2ri + 2rj + rm

) Δ
30

ρcp
(
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) Δ
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ρcp
(
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P(h)E
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Δ
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(A3) 

where the unknown parameter where the coefficient ϕʹ is expressed as ϕʹ = k(ri + rj + rm)/(12Δ), Δ is equal to bicj + bjci. The coefficients ai, bi, ci, aj,

bj, cj, am, bm, cm are undetermined, they are obtained based on the node coordinates: 

Y. Zhao et al.                                                                                                                                                                                                                                    Energy Conversion and Management 342 (2025) 120174 

13 



ai = rjzm − rmzj bi = zj − zm ci = rm − rj
aj = rmzi − rizm bj = zm − zi cj = ri − rm
am = rizj − rjzi bm = zi − zj cm = rj − ri

(A4) 

where the position coordinates of the three nodes i, j and m of an element are defined as (ri, zi), (rj, zj), (rm, zm) respectively.

Appendix B 

The truncated area, maximum truncated area, critical truncated area, and minimum truncated area of the asperity are expressed as: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

atmax = AtDf
− 1( 2 − Df

)
φ

Df − 2
2

atc = 2Gf
2

(
H̃
2Ẽ

)
2

1− Df

as = 10− 18

(B1) 

where Df and Gf denote the fractal dimension and fractal roughness, respectively. H̃ and ̃E represent the equivalent hardness and elastic modulus of 
the contact surface. φ is the domain expansion factor, satisfying the equation φ(2− Df )/2 − (1 + φ− 1/2Df )

1− 2/Df − 2/Df + 1 = 0,Df ∈ (1,2). 

n(at) =
1
2
Df φ

2− Df
2 a

Df
2
tmaxa

−
Df+2

2
t , at ∈ [0, atmax] (B2) 

⎧
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(
αd
2

)2

Ar =
1
2

∫ atmax

0
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At =

∫ atmax

0
atn(at)dat

(B3) 

where α denotes the diameter coefficient of the bolt hole, d represents the nominal diameter of the bolt, and rm is the distance from the center of the 
bolt hole to the stress field boundary.

Appendix C 

The independent sampling matrices A and B are denoted as follows: 

A =

⎡

⎢
⎢
⎣

a1,1 ⋯ a1,k
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aN,k ⋯ aN,k

⎤

⎥
⎥
⎦,B =

⎡

⎢
⎢
⎣

b1,1 ⋯ b1,k
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bN,k ⋯ bN,k

⎤

⎥
⎥
⎦ (C1) 

where aji and bji are general elements of the respective matrices.
The matrix AB

(i) associated with the i th factor Ci obtained by radial resampling method is as follows: 

AB
(i) =

⎡

⎢
⎢
⎣

a1,1 ⋯ a1,i− 1 b1,i a1,i+1 ⋯ a1,k
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aN,k ⋯ aN,i− 1 bN,i aN,i+1 ⋯ aN,k

⎤

⎥
⎥
⎦ (C2) 

Data availability

The original simulation data and experimental measurement data 
supporting the findings of this study will be made available on request.
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